Skip to main content

Advertisement

Log in

Isolation and Functional Characterization of Single Domain Antibody Modulators of Caspase-3 and Apoptosis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Apoptosis, or programmed cell death, is an essential process affecting homeostasis of cell growth, development, and the elimination of damaged or dangerous cells. Inappropriate cell death caused by oxidative stress has been implicated in the development of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and stroke. On the other hand, a defect in the cell death process leads to the development of cancer. For example, the main player of apoptosis, p53, is defective in many of the human cancers. Apoptosis is regulated by the interplay of pro-apoptotic and anti-apoptotic proteins from the Bcl-2 family and caspases. In particular, specific modulators of the activity of Caspase 3 could be very important for the development of therapies for diseases such as neurodegeneration and cancer. In this study, two VHHs specific to Caspase 3 (VhhCasp31 and VhhCasp32) were isolated from a heavy chain antibody variable domain (VHH) phage display library and tested for their apoptosis-modulating effects. While VhhCasp31 was found to be antagonistic towards Caspase 3, VhhCasp32 was agonistic. Furthermore, when expressed as intrabodies in SHSY-5Y neuroblastoma cells, VhhCasp31 rendered cells resistant to oxidative-stress-induced apoptosis, whereas VhhCasp32 resulted in apoptosis. These VHH antagonist and agonist of apoptosis could have potential for the development of therapeutics for neurodegenerative diseases and cancer, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adhihetty, P. J., & Hood, D. A. (2003). Mechanism of apoptosis in skeletal muscle. Basic and Applied Myology, 13, 171–179.

    Google Scholar 

  2. Pollack, M., & Leeuwenburgh, C. (2001). Apoptosis and aging: role of the mitochondria. J Ger. Biol Sci, 56A, B475–B482.

    CAS  Google Scholar 

  3. Lee, D., Long, S. A., Adams, J. L., et al. (1999). Potent and selective nonpeptide inhibitors of caspase 3 and 7 inhibit apoptosis and maintain cell functionality. The Journal of Biological Chemistry, 275, 16007–16014.

    Article  Google Scholar 

  4. Fleury, C., Mignotte, B., & Vayssiere, J. L. (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 84, 131–141, DOI 10.1016/S0300-9084(02)01369-X.

    Article  CAS  Google Scholar 

  5. Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.

    Google Scholar 

  6. McCarthy, S., Somayajulu, M., Sikorska, M., Borowy-Borowski, H., & Pandey, S. (2004). Paraquat induces oxidative stress and neuronal cell death: neuroprotection by water soluble coenzyme Q10. Toxicology and Applied Pharmacology, 201, 21–31.

    Article  CAS  Google Scholar 

  7. Duke, R. C., Ojcius, D. M., & Young, J. D. (1996). Cell suicide in health and disease. Scientific American, 275, 80–87.

    Article  CAS  Google Scholar 

  8. Chao, D. T., & Korsmeyer, S. J. (1998). Bcl-2 Family: regulators of cell death. Annual Review of Immunology, 16, 395–419, DOI 10.1146/annurev.immunol.16.1.395.

    Article  CAS  Google Scholar 

  9. Kontermann, R. E. (2004). Intrabodies as therapeutic agents. Methods, 34, 163–170.

    Article  CAS  Google Scholar 

  10. Miller, T. W., & Messer, A. (2005). Intrabody applications in neurological disorders: progress and future prospects. Molecular Therapy, 12, 394–401.

    Article  CAS  Google Scholar 

  11. Williams, B. R., & Zhu, Z. (2006). Intrabody-based approaches to cancer therapy: status and prospects. Current Medicinal Chemistry, 13, 1473–1480.

    Article  CAS  Google Scholar 

  12. Holliger, P., & Hudson, P. J. (2005). Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 23, 1126–1136.

    Article  CAS  Google Scholar 

  13. Dekker, S., Toussaint, W., Panayotou, G., de, W. T., Visser, P., Grosveld, F., et al. (2003). Intracellularly expressed single-domain antibody against p15 matrix protein prevents the production of porcine retroviruses. Journal of Virology, 77, 12132–12139, DOI 10.1128/JVI.77.22.12132-12139.2003.

    Article  CAS  Google Scholar 

  14. Jobling, S. A., Jarman, C., Teh, M. M., Holmberg, N., Blake, C., & Verhoeyen, M. E. (2003). Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nature Biotechnology, 21, 77–80.

    Article  CAS  Google Scholar 

  15. Tanaka, T., Lobato, M. N., & Rabbitts, T. H. (2003). Single domain intracellular antibodies: a minimal fragment for direct in vivo selection of antigen-specific intrabodies. Journal of Molecular Biology, 331, 1109–1120.

    Article  CAS  Google Scholar 

  16. Aires da Silva, F., Santa-Marta, M., Freitas-Vieira, A., Mascarenhas, P., Barahona, I., Moniz Pereira, J., et al. (2004). Camelized rabbit-derived VH single-domain intrabodies against Vif strongly neutralize HIV-1 infectivity. Journal of Molecular Biology, 340, 525–542, DOI 10.1016/j.jmb.2004.04.062.

    Article  CAS  Google Scholar 

  17. Colby, D. W., Chu, Y., Cassady, J. P., Duennwald, M., Zazulak, H., Webster, J. M., et al. (2004a). Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proceedings of the National Academy of Sciences of the United States of America, 101, 17616–17621, DOI 10.1073/pnas.0408134101.

    Article  CAS  Google Scholar 

  18. Colby, D. W., Garg, P., Holden, T., Chao, G., Webster, J. M., Messer, A., et al. (2004b). Development of a human light chain variable domain (V(L)) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. Journal of Molecular Biology, 342, 901–912, DOI 10.1016/j.jmb.2004.07.054.

    Article  CAS  Google Scholar 

  19. Gueorguieva, D., Li, S., Walsh, N., Mukerji, A., Tanha, J., & Pandey, S. (2006). Identification of single-domain, Bax-specific intrabodies that confer resistance to mammalian cells against oxidative-stress-induced apoptosis. FASEB Journal, 20, 2636–2638, DOI 10.1096/fj.06-6306fje.

    Article  CAS  Google Scholar 

  20. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  21. Tanha, J., Dubuc, G. J., Hirama, T., Narang, S. A., & MacKenzie, C. R. (2002). Selection by phage display of llama conventional VH fragments with heavy chain antibody VHH properties. Journal Of Immunological Methods, 263, 97–109.

    Article  CAS  Google Scholar 

  22. Harmsen, M. M., Ruuls, R. C., Nijman, I. J., Niewold, T. A., Frenken, L. G. J., & de Geus, B. (2000). Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Molecular Immunology, 37, 579–590, DOI 10.1016/S0161-5890(00)00081-X.

    Article  CAS  Google Scholar 

  23. Denault, J. B., Salveson, G. S. (2002). Caspases: keys in the ignition of cell death. Chemical Reviews, 102, 4489–4499, DOI 10.1021/cr010183n.

    Article  CAS  Google Scholar 

  24. Kiechle, F. L., & Zhang, X. (2002). Apoptosis: biochemical aspects and clinical implications. Clinica Chimica Acta, 326, 27–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would also like to thank Ms Carly Griffin and Mallika Somayajulu-Niţu for critically reviewing the MS. We would like to acknowledge The Heart and Stroke Foundation of Ontario for providing the funding for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyaram Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGonigal, K., Tanha, J., Palazov, E. et al. Isolation and Functional Characterization of Single Domain Antibody Modulators of Caspase-3 and Apoptosis. Appl Biochem Biotechnol 157, 226–236 (2009). https://doi.org/10.1007/s12010-008-8266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8266-4

Keywords

Navigation