Skip to main content
Log in

Isolation and Identification of a Newly Isolated Alternaria sp. ND-16 and Characterization of Xylanase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alternaria sp. ND-16, a bacterium isolated from soil sample, was identified as a strain of Alternaria mali based on the morphology and comparison of internal transcribed spacer rDNA gene sequence studies. Furthermore, it is demonstrated that this strain has xylanase activity, and the activity can be optimized under suitable growing conditions where wheat bran and urea are the primary sources of carbon and nitrogen. Partially purified xylanase from Alternaria sp. ND-16 is shown to have an optimal pH of 6.0 and optimal temperature of 50 °C, making this enzyme potentially suitable for industrial applications. It is also demonstrated that Na+ and Mn2+ show strong inhibition of the xylanase while K+, Li+, Fe2+, Cu2+, and Zn2+ have no significant effect on the activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanase from fungi: Properties and industrial applications. Applied Microbiology and Biotechnology, 67, 577–591.

    Article  CAS  Google Scholar 

  2. Vicuna, R., Oyarzum, E., & Osses, M. (1995). Assessment of various commercial enzymes in the bleaching of radiata pine kraft pulps. Journal of Biotechnology, 40, 163–168.

    Article  CAS  Google Scholar 

  3. Silversides, F. G., Scott, T. A., Korver, D. R., Afsharmanesh, M., & Hruby, M. (2006). A study on the interaction of xylanase and phytase enzymes in wheat-based diets fed to commercial white and brown egg laying hens. Poultry Science, 85, 297–305.

    CAS  Google Scholar 

  4. Maat, J., Roza, M., Verbakel, J., Stam, H., DaSilra, M. J. S., Egmond, M. R., et al. (1992). Xylanases and their application in bakery. In J. Visser, G. Beldman, M. A. K. van Someren, & A. G. J. Voragen (Eds.) Xylans and xylanases (pp. 349–360). Amsterdam: Elsevier.

    Google Scholar 

  5. Jiang, Z. Q., Yang, S. Q., Tan, S. S., Li, L. T., & Li, X. T. (2005). Characterization of a xylanase from the newly isolated thermophilic thermomyces lanuginosus CAU44 and its application in bread making. Letters in Applied Microbiology, 41, 69–76.

    Article  CAS  Google Scholar 

  6. Li, Y., Lu, J., Gu, G. X., & Mao, Z. (2005a). Characterization of the enzymatic degradation of arabinoxylans in grist containing wheat malt using response surface methodology. Journal of the American Society of Brewing Chemists, 63, 171–176.

    CAS  Google Scholar 

  7. Lu, J., & Li, Y. (2006). Effects of arabinoxylan solubilization on wort viscosity and filtration when mashing with grist containing wheat and wheat malt. Food Chemisty, 98, 164–170.

    Article  CAS  Google Scholar 

  8. Lu, J., Li, Y., Gu, G. X., & Mao, Z. (2005). Effects of molecular weight and concentration of arabinoxylans on the membrane plugging. Journal of Agricultural and Food Chemistry, 53, 4996–5002.

    Article  CAS  Google Scholar 

  9. Shah, A. R., & Madamwar, D. (2005). Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochemistry, 40, 1763–1771.

    Article  CAS  Google Scholar 

  10. Li, Y., Cui, F., Liu, Z., Xu, Y., & Zhao, H. (2007a). Improvement of xylanase production by Penicillium oxalicum ZH-30 using response surface methodology. Enzyme Microbiology Technology, 40, 1381–1388.

    Article  CAS  Google Scholar 

  11. Li, Y., Liu, Z., Zhao, H., Xu, Y., & Cui, F. (2007b). Statistical optimization of xylanase production from new isolated Penicillium oxalicum ZH-30 in submerged fermentation. Biochemical Engineering Journal, 34, 82–86.

    Article  CAS  Google Scholar 

  12. Azin, M., Moravej, R., & Zareh, D. (2007). Production of xylanase by Trichoderma longibrachiatum on a mixture of wheat bran and wheat straw: Optimization of culture condition by Taguchi method. Enzyme Microbiology Technology, 40, 801–805.

    Article  CAS  Google Scholar 

  13. Abrusci, C., Martín-González, A., Del Amo, A., Catalina, F., Collado, J., & Platas, G. (2005). Isolation and identification of bacteria and fungi from cinematographic films. International Biodeterioration and Biodegradation, 56, 58–68.

    Article  CAS  Google Scholar 

  14. Li, Y., Liu, Z., Cui, F., Xu, Y., & Zhao, H. (2007c). Production of xylanase from a newly isolated Penicillium sp. ZH-30. World Journal of Microbiology and Biotechnology, 23, 837–843.

    Article  CAS  Google Scholar 

  15. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  16. Lee, S. B., & Taylor, J. W. (1990). Isolation of DNA from fungal mycelia and single spores. In M. A. Innis, D. H Gelfand, J. S. Sninsky, & T. J. White (Eds.) PCR protocols: A guide to methods and applications (pp. 282–287). New York: Academic.

    Google Scholar 

  17. Liu, Z. Q., & Sun, Z. H. (2004). Cloning and expression of D-lactonohydrolase cDNA from Fusarium moniliforme in Saccharomyces cerevisiae. Biotech Letters, 26, 1861–1865.

    Article  CAS  Google Scholar 

  18. Liu, Z. Q., Li, Y., Xu, Y. Y., Ping, L. F., & Zheng, Y. G. (2007). Cloning, sequencing, and expression of a novel epoxide hydrolase gene from Rhodococcus opacus in Escherichia coli and characterization of enzyme. Applied Microbiology and Biotechnology, 74, 99–106.

    Article  CAS  Google Scholar 

  19. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Nascimento, R. P., Coelho, R. R. R., Marques, S., Alves, L., Girio, F. M., Bon, E. P. S., et al. (2002). Production and partial characterisation of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzyme Microbiology Technology, 31, 549–555.

    Article  CAS  Google Scholar 

  21. Ghosh, M., Das, A., Mishra, A. K., & Nanda, G. (1993). Aspergillus sydowii MG 49 is a strong producer of thermostable xylanolytic enzyme. Enzyme Microbiology Technology, 15, 703–709.

    Article  CAS  Google Scholar 

  22. Liu, Z. Q., Li, Y., Ping, L. F., Xu, Y. Y., Cui, F. J., Xue, Y. P., et al. (2007). Isolation and identification of a novel Rhodococcus sp. ML-0004 producing epoxide hydrolase and optimization of enzyme production. Process Biochemistry, 42, 889–894.

    Article  CAS  Google Scholar 

  23. Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.

    Article  CAS  Google Scholar 

  24. Liu, Z., Hu, Z., Zheng, G., & Shen, Y. (2008). Optimization of cultivation conditions for the production of 1,3-dihydroxyacetone by Pichia membranifaciens using response surface methodology. Biochemical Engineering Journal, 38, 285–291.

    Article  CAS  Google Scholar 

  25. Erland, S., Henrion, B., Martin, F., Glover, L. A., & Alexander, I. J. (1994). Identification of the ectomycorrhizal basidiomycete tylospora-fibrillosa donk by RFLP analysis of the PCR-amplified ITS and IGS regions of ribosomal DNA. New Phytologist, 126, 525–532.

    Article  CAS  Google Scholar 

  26. Liu, Z. Q., Zhang, J. F., Zheng, Y. G., & Shen, Y. C. (2008). Production of astaxanthin from a newly isolated phaffia rhodozyma mutant by low-energy ions beam implantation. Journal of Applied Microbiology, 108, 861–872.

    Article  Google Scholar 

  27. Filajdic, N., & Sutton, T. B. (1991). Identification and distribution of Alternaria mali on apples in North Carolina and susceptibility of different varieties of apples to alternaria blotch. Plant Disease, 75, 1045–1048.

    Google Scholar 

  28. Oliveir, L. A., Porto, A. L. F., & Tambourgi, E. B. (2006). Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Bioresource Technology, 97, 862–867.

    Article  Google Scholar 

  29. Li, Y., Lin, J., Lu, J., Gu, G., & Mao, Z. (2006). Effect of pH, cultivation time and substrate concentration on the xylanase production by Aspergillus awamori ZH-26 under submerged fermentation using central composite rotary design. Food Technology and Biotechnology, 44, 473–477.

    CAS  Google Scholar 

  30. Yang, S. Q., Yan, Q. J., Jiang, Z. Q., Li, L. T., Tian, H. M., & Wang, Y. Z. (2006). High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Bioresource Technology, 97, 1794–1800.

    Article  CAS  Google Scholar 

  31. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., & Kim, S. W. (2004). Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technology, 91, 153–156.

    Article  CAS  Google Scholar 

  32. Sermanni, G. G., Annibale, A., Lena, G. D., Vitale, N. S., Mattia, E. D., & Minelli, V. (1994). The production of exo-enzymes by Lentinus edodes and pleurotus ostreatus and their use for upgrading corn straw. Bioresource Technology, 48, 173–178.

    Article  CAS  Google Scholar 

  33. Cai, Q., Yue, X., Niu, T., Ji, C., & Ma, Q. (2004). The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus. Process Biochemistry, 39, 1561–1566.

    Article  CAS  Google Scholar 

  34. Leathers, T. D., Detroy, R. W., & Bothast, R. J. (1986). Induction and glucose repression of xylanase from a color variant strain of Aureobasidium pullulans. Biotechnology Letters, 8, 867–872.

    Article  CAS  Google Scholar 

  35. Singh, A., Kumar, P. K. R., & Schtigerl, K. (1992). Bioconversion of cellulosic materials to ethanol by filamentous fungi. Advances in Biochemical Engineering, Biotechnology, 45, 29–55.

    CAS  Google Scholar 

  36. Liu, W., Lu, Y. L., & Ma, G. R. (1999). Induction and glucose repression of endo-β-xylanase in the yeast Trichosporon cutaneum SL409. Process Biochemistry, 34, 67–72.

    Article  Google Scholar 

  37. Ito, K. (1993). Acid stable xylanase from Aspergillus kawachii. J Brew Soc Japan, 88, 920–928.

    CAS  Google Scholar 

  38. Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23, 411–456.

    Article  CAS  Google Scholar 

  39. Haltrich, D., Nidetzky, B., Kulbe, K. D., Steiner, W., & Zupancic, S. (1996). Production of fungal xylanases. Bioresource Technology, 58, 137–161.

    Article  CAS  Google Scholar 

  40. Dobrev, G. T., Pishtiyski, I. G., Stanchev, V. S., & Mircheva, R. (2007). Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresource Technology, 98, 2671–2678.

    Article  CAS  Google Scholar 

  41. Li, Y., Lu, J., & Gu, G. (2005b). Control of arabinoxylan solubilization and hydrolysis in mashing. Food Chemistry, 90, 101–108.

    Article  CAS  Google Scholar 

  42. Miyazaki, K., Takenouchi, M., Kondo, H., Noro, N., Suzuki, M., & Tsuda, S. (2006). Thermal stabilization of Bacillus subtilis Family-11 xylanase by directed evolution. Journal of Biological Chemistry, 281, 10236–10242.

    Article  CAS  Google Scholar 

  43. Liu, Z. Q., Sun, Z. H., & Leng, Y. (2006). Directed evolution of D-pactonohydrolase from Fusarium moniliforme. Journal of Agricultural and Food Chemistry, 54, 5823–5830.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the help of Dr. Peter Baker of the Department of Chemical and Biological Science, Polytechnic University, USA, for his kindness in editing this manuscript. This work was supported by the Natural Science Foundation of Zhejiang Province (No. Y506136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yin Li, Zhiqiang Liu or Lijiao Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, Z., Cui, F. et al. Isolation and Identification of a Newly Isolated Alternaria sp. ND-16 and Characterization of Xylanase. Appl Biochem Biotechnol 157, 36–49 (2009). https://doi.org/10.1007/s12010-008-8239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8239-7

Keywords

Navigation