Skip to main content

Advertisement

Log in

Superoxide Dismutase-Loaded PLGA Nanoparticles Protect Cultured Human Neurons Under Oxidative Stress

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of our study was to investigate the neuroprotective efficacy of superoxide dismutase (SOD), loaded in poly(d,l-lactide co-glycolide; PLGA) nanoparticles (NPs), in cultured human neurons challenged with hydrogen peroxide (H2O2)-induced oxidative stress. We hypothesized that the protected and sustained intracellular delivery of SOD encapsulated in NPs would demonstrate better neuroprotection from oxidative stress than either SOD or pegylated SOD (PEG-SOD) in solution. SOD-NPs (~81 ± 4 nm in diameter, 0.9% w/w SOD loading) released the encapsulated SOD in an active form with 8.2% cumulative release during the first 24 h, followed by a slower release thereafter. The results demonstrated that PLGA-NPs are compatible with human neurons, and the neuroprotective effect of SOD-NPs is dose-dependent, with efficacy seen at >100 U SOD, and less significant effects at lower doses. Neither SOD (25–200 U) nor PEG-SOD (100 U) in solution demonstrated the neuroprotective effect under similar conditions. The neuroprotective effect of SOD-NPs was seen up to 6 h after H2O2-induced oxidative stress, but the effect diminished thereafter. Confocal microscopic studies demonstrated better intracellular neuronal uptake of the encapsulated model protein (fluorescein isothiocyanate-labeled BSA) than the protein in solution. Thus, the mechanism of efficacy of SOD-NPs appears to be due to the stability of the encapsulated enzyme and its better neuronal uptake after encapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Panyam, J., & Labhasetwar, V. (2003). Advanced Drug Delivery Reviews, 55, 329–347.

    Article  CAS  Google Scholar 

  2. Wolburg, H., & Lippoldt, A. (2002). Vascular Pharmacology, 38, 323–337.

    Article  CAS  Google Scholar 

  3. Sun, H., Dai, H., Shaik, N., & Elmquist, W. F. (2003). Advanced Drug Delivery Reviews, 55, 83–105.

    Article  CAS  Google Scholar 

  4. Ellis-Behnke, R. G., Teather, L. A., Schneider, G. E., & So, K. F. (2007). Current Pharmaceutical Design, 13, 2519–2528.

    Article  CAS  Google Scholar 

  5. Maier, C. M., & Chan, P. H. (2002). Neuroscientist, 8, 323–334.

    Article  CAS  Google Scholar 

  6. Warner, D. S., Sheng, H., & Batinic-Haberle, I. (2004). Journal of Experimental Biology, 207, 3221–3231.

    Article  CAS  Google Scholar 

  7. McCormick, M. L., Gavrila, D., & Weintraub, N. L. (2007). Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 461–469.

    Article  CAS  Google Scholar 

  8. Wassmann, S., Wassmann, K., & Nickenig, G. (2004). Hypertension, 44, 381–386.

    Article  CAS  Google Scholar 

  9. Yasui, K., & Baba, A. (2006). Inflammation Research, 55, 359–363.

    Article  CAS  Google Scholar 

  10. MacNee, W. (2005). European Respiratory Review, 14, 12–22.

    Article  Google Scholar 

  11. Szeto, H. H. (2006). AAPS Journal, 8, E521–E531.

    Article  CAS  Google Scholar 

  12. Tsubokawa, T., Jadhav, V., Solaroglu, I., Shiokawa, Y., Konishi, Y., & Zhang, J. H. (2007). Stroke, 38, 1057–1062.

    Article  CAS  Google Scholar 

  13. Francis, J. W., Ren, J., Warren, L., Brown, R. H., & Finklestein, S. P. (1997). Experimental Neurology, 146, 435–443.

    Article  CAS  Google Scholar 

  14. Yoshida, K., Burton, G. F., McKinney, J. S., Young, H., & Ellis, E. F. (1992). Stroke, 23, 865–869.

    CAS  Google Scholar 

  15. Brazil, M. (2002). Nature Reviews, Drug Discovery, 1, 10.

    Article  CAS  Google Scholar 

  16. Vasir, J. K., & Labhasetwar, V. (2007). Advanced Drug Delivery Reviews, 59, 718–728.

    Article  CAS  Google Scholar 

  17. Davda, J., & Labhasetwar, V. (2005). Journal of Biomedical Nanotechnology, 9, 74–82.

    Article  CAS  Google Scholar 

  18. Sah, H. (1999). Journal of Controlled Release, 58, 143–151.

    Article  CAS  Google Scholar 

  19. Prabha, S., Zhou, W. Z., Panyam, J., & Labhasetwar, V. (2002). International Journal of Pharmaceutics, 244, 105–115.

    Article  CAS  Google Scholar 

  20. Miller, W. L., & Kester, D. R. (1988). Analytical Chemistry, 60, 2711–2715.

    Article  CAS  Google Scholar 

  21. Donnan, G. A. (2007). Stroke, 39, 242–248.

    Article  Google Scholar 

  22. Vessey, D. A., Lee, K. H., & Blacker, K. L. (1992). Journal of Investigative Dermatology, 99, 859–863.

    Article  CAS  Google Scholar 

  23. De la Monte, S. M., Neely, T. R., Cannon, J., & Wands, J. R. (2000). Cellular and Molecular Life Sciences, 57, 1471–1481.

    Article  Google Scholar 

  24. Conde de la Rosa, L., Schoemaker, M. H., Vrenken, T. E., Buist-Homan, M., Havinga, R., Jansen, P. L., et al. (2006). Journal of Hepatology, 44, 918–929.

    Article  CAS  Google Scholar 

  25. Supinski, G. S., & Callahan, L. A. (2006). American Journal of Respiratory and Critical Care Medicine, 173, 1240–1247.

    Article  CAS  Google Scholar 

  26. McKinney, J. S., Willoughby, K. A., Liang, S., & Ellis, E. F. (1996). Stroke, 27, 934–940.

    CAS  Google Scholar 

  27. Veronese, F. M., Caliceti, P., Schiavon, O., & Sergi, M. (2002). Advanced Drug Delivery Reviews, 54, 587–606.

    Article  CAS  Google Scholar 

  28. Chi, L. G., Tamura, Y., Hoff, P. T., Macha, M., Gallagher, K. P., Schork, M. A., et al. (1989). Circulation Research, 64, 665–675.

    CAS  Google Scholar 

  29. Beckman, J. S., Minor Jr., R. L., White, C. W., Repine, J. E., Rosen, G. M., & Freeman, B. A. (1988). Journal of Biological Chemistry, 263, 6884–6892.

    CAS  Google Scholar 

  30. Truelove, D., Shuaib, A., Ijaz, S., Ishaqzay, R., & Kalra, J. (1994). Free Radical Biology & Medicine, 17, 445–450.

    Article  CAS  Google Scholar 

  31. Whittemore, E. R., Loo, D. T., Watt, J. A., & Cotman, C. W. (1995). Neuroscience, 67, 921–932.

    Article  CAS  Google Scholar 

  32. Huang, F., Vemuri, M. C., & Schneider, J. S. (2004). Brain Research, 997, 79–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Grant support from the Nebraska Research Initiative, the National Institutes of Health (MH67525-01), and Telomolecular, Inc., Rancho Cordova, CA, 95670, USA, is gratefully acknowledged. Authors thank Ms. Melissa Jedlicka for proof-reading the manuscript.

Conflict of Interest

M.K.R. and V.L. have financial interest in Telomolecular, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Labhasetwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, M.K., Wu, L., Kou, W. et al. Superoxide Dismutase-Loaded PLGA Nanoparticles Protect Cultured Human Neurons Under Oxidative Stress. Appl Biochem Biotechnol 151, 565–577 (2008). https://doi.org/10.1007/s12010-008-8232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8232-1

Keywords

Navigation