Skip to main content
Log in

Effect of Aeration on Production of Anticancer Lignans by Cell Suspension Cultures of Linum album

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of aeration within the range of 0.2–0.5 vvm on transformed and high yielding cell cultures of Linum album were investigated in a 5-L stirred tank bioreactor equipped with low shear Setric impeller. The kinetics of cell growth, substrate utilization, and production of lignans, namely, podophyllotoxin and 6-methoxypodophyllotoxin, were established. Maximum biomass of 23.2 g/L and lignan accumulation levels of 176.3 mg/L podophyllotoxin and 10.86 mg/L 6-methoxypodophyllotoxin were obtained with initial air flow rate of 0.3 vvm. Specified oxygen demand of cells was estimated to be 1.35 g O2/g biomass. The optimum oxygen transfer coefficient was found to be 16.7 h−1 , which corresponded to aeration rate of 0.3 vvm. The effect of minimum dissolved oxygen (DO) concentration was investigated with respect to biomass and lignan production by comparing identically aerated and agitated bioreactor cultivations at dissolved oxygen concentrations of 10%, 30%, and 50%. Cell growth and podophyllotoxin accumulation were not affected significantly at these DO levels, but 6-methoxypodophyllotoxin production was enhanced when cells were cultivated at 30% DO level. The maximum volumetric productivities of 18.2 mg/L day and 3.2 mg/L day for podophyllotoxin and 6-methoxypodophyllotoxin, respectively, were obtained. These results establish the key role of oxygen on mass scale production of anticancer lignans by cell cultures of L. album. It may serve as a suitable parameter for scale-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rao, S. R., & Ravishankar, G. A. (2002). Biotechnology Advances, 20, 101–153.

    Article  CAS  Google Scholar 

  2. Chattopadhyay, S., Bisaria, V. S., Bhojwani, S. S., & Srivastava, A. K. (2003). Canadian Journal of Chemical Engineering, 81, 1–8.

    Article  Google Scholar 

  3. Chattopadhyay, S., Bisaria, V. S., & Srivastava, A. K. (2003). Biotechnology Progress, 19, 1026–1028.

    Article  CAS  Google Scholar 

  4. Farakya, S., Bisaria, V. S., & Srivastava, A. K. (2004). Applied Microbiology and Biotechnology, 65, 504–519.

    Google Scholar 

  5. Baldi, A., Bisaria, V. S., & Srivastava, A. K. (2007). Medicinal plant biotechnology—From basic research to industrial applications (pp. 117–156). Weinheim, Germany: Wiley-VCH Verlag.

    Google Scholar 

  6. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 51, 473–497.

    Article  Google Scholar 

  7. Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Experimental Cell Research, 50, 151–158.

    Article  CAS  Google Scholar 

  8. Bisaria, V. S., Srivastava, A. K., Baldi, A., Jain, A., Gupta, N. (2007). Patent Appl. No. 1266/DEL/2007.

  9. Dubois, M., GuiUes, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  10. Towill, L., & Mazur, P. (1975). Canadian Journal of Botany, 53, 1097–1102.

    Article  Google Scholar 

  11. APHA (1981). Standard methods for the examination of water and wastewater (pp. 489–493). Washington: American Public Health Association.

    Google Scholar 

  12. Wang, S. J., & Zhong, J. J. (1996). Biotechnology and Bioengineering, 51, 520–527.

    Article  CAS  Google Scholar 

  13. Tanaka, H. (1981). Biotechnology and Bioengineering, 23, 1203–1218.

    Article  Google Scholar 

  14. Breuling, M., Alfermann, A. W., & Reinhard, E. (1985). Plant Cell Reports, 4, 220–223.

    Article  CAS  Google Scholar 

  15. Snape, J. B., Thomas, N. H., & Callow, J. A. (1989). Biotechnology and Bioengineering, 34, 1058–1062.

    Article  CAS  Google Scholar 

  16. Kobayashi, Y., Fukui, H., & Tabata, M. (1989). Plant Cell Reports, 8, 255–258.

    Article  CAS  Google Scholar 

  17. Tate, J. L., & Payne, G. F. (1991). Plant Cell Reports, 10, 22–25.

    Article  CAS  Google Scholar 

  18. Leckie, F., Scragg, A. H., & Cliffe, K. C. (1991). Biotechnology and Bioengineering, 37, 364–370.

    Article  CAS  Google Scholar 

  19. Gao, J., & Lee, J. M. (1992). Biotechnology Progress, 8, 285–290.

    Article  CAS  Google Scholar 

  20. Schlatmann, J. E., Moreno, P. R. H., Vinka, J. L., tan Hopen, H. J. G., Verpoorte, R., & Heijnen, J. J. (1994). Biotechnology and Bioengineering, 44, 461–468.

    Article  CAS  Google Scholar 

  21. Han, J., & Zhong, J. J. (2003). Enzyme and Microbial Technology, 32, 498–503.

    Article  CAS  Google Scholar 

  22. Thanh, N. T., Murthy, H. N., Yu, K. W., Jeong, C. S., Hahn, E.-J., & Paek, K.-Y. (2006). Journal of Plant Physiology, 163, 1337–1343.

    Article  CAS  Google Scholar 

  23. Valluri, J. V., Treat, W. J., & Soltes, E. J. (1991). Plant Cell Reports, 10, 366–370.

    Article  CAS  Google Scholar 

  24. Spieler, H., Alfermann, A. W., & Reinhard, E. (1985). Applied Microbiology and Biotechnology, 23, 1–4.

    Article  CAS  Google Scholar 

  25. Jay, V., Genestier, S., & Courduroux, J.-C. (1992). Plant Cell Reports, 11, 605–608.

    Article  CAS  Google Scholar 

  26. Federolf, K., Alfermann, A. W., & Fuss, E. (2007). Phytochemistry, 68, 1397–1406.

    Article  CAS  Google Scholar 

  27. Su, W. W., Lei, F., & Kao, N. P. (1995). Applied Microbiology and Biotechnology, 44, 293–299.

    Article  CAS  Google Scholar 

  28. Huang, S. Y., & Chou, C. J. (2000). Bioprocess Engineering, 23, 585–593.

    Article  CAS  Google Scholar 

  29. Pavlov, A. I., Georgiev, M. I., & Ilieva, M. P. (2005). Applied Microbiology and Biotechnology, 21, 389–392.

    Article  CAS  Google Scholar 

  30. Chattopadhyay, S., Srivastava, A. K., Bhojwani, S. S., & Bisaria, V. S. (2002). Journal of Bioscience and Bioengineering, 93, 215–220.

    Article  CAS  Google Scholar 

  31. Seidel, V., Windhovel, J., Eaton, G., Alfermann, A. W., Arroo, R. R. J., Medarde, M., et al. (2002). Planta, 215, 1031–1039.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors, AB, is grateful to All India Council for Technical Education for providing National Doctoral Fellowship during the course of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra S. Bisaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldi, A., Srivastava, A.K. & Bisaria, V.S. Effect of Aeration on Production of Anticancer Lignans by Cell Suspension Cultures of Linum album . Appl Biochem Biotechnol 151, 547–555 (2008). https://doi.org/10.1007/s12010-008-8230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8230-3

Keywords

Navigation