Skip to main content
Log in

Deactivation Kinetics and Response Surface Analysis of the Stability of α-l-Rhamnosidase from Penicillium decumbens

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The stability of the mixed enzyme preparation Naringinase from Penicillium decumbens was studied in dependence of the temperature, the pH value, and the enzyme concentration by means of response surface methodology. Deactivation kinetics by formation of an intermediate state was proposed for fitting deactivation data. Empirical models could then be constructed for prediction of deactivation rate constants, specific activity of intermediate state, and half-life values under different incubation conditions. From this study, it can be concluded that (1) Naringinase is most stable in the pH range of 4.5–5.0, being quite sensitive to lower pHs (<3.5) and (2) the glyco-enzyme is a rather thermo-stable enzyme preserving its initial activity for long times when incubated at its optimal pH up to temperatures of 65 °C. Enriched α-l-rhamnosidase after column treatment and ultrafiltration presented similar deactivation kinetics pattern and half-life values as the unpurified enzyme. Thus, any influence of low molecular weight substances on its deactivation is most probably negligible. The intermediate state of the enzyme may correspond to unfolding and self-digestion of its carbohydrate portion, lowering its activity relative to the initial state. The digestion- and unfolding-grade of this intermediate state may also be controlled by the pH and temperature of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dunlap, W. J., Hagen, R. E., & Wender, S. H. (1962). Journal of Food Science, 27(6), 597.

    Google Scholar 

  2. Puri, M., & Banerjee, U. C. (2000). Biotechnology Advances, 18(3), 207–217.

    Article  CAS  Google Scholar 

  3. Romero, C., et al. (1985). Analytical Biochemistry, 149(2), 566–571.

    Article  CAS  Google Scholar 

  4. Young, N. M., Johnston, R. A. Z., & Richards, J. C. (1989). Carbohydrate Research, 191(1), 53–62.

    Article  CAS  Google Scholar 

  5. Ellenrieder, G., & Daz, M. (1996). Biocatalysis and Biotransformation, 14(2), 113–123.

    Article  CAS  Google Scholar 

  6. Mutter, M., et al. (1994). Plant Physiology, 106(1), 241–250.

    Article  CAS  Google Scholar 

  7. Manzanares, P., et al. (2001). Applied and Environmental Microbiology, 67(5), 2230–2234.

    Article  CAS  Google Scholar 

  8. Gallego, M. V., et al. (2001). Journal of Food Science, 66(2), 204–209.

    Article  CAS  Google Scholar 

  9. Soria, F., & Ellenrieder, G. (2002). Bioscience Biotechnology and Biochemistry, 66(7), 1442–1449.

    Article  CAS  Google Scholar 

  10. Meiwess, J., Wullbrant, D., & Giani, C. (1994) EP0599159.

  11. Trummler, K., Effenberger, F., & Syldatk, C. (2003). European Journal of Lipid Science and Technology, 105(10), 563–571.

    Article  CAS  Google Scholar 

  12. Mamma, D., et al. (2004). Food Biotechnology, 18(1), 1–18.

    Article  CAS  Google Scholar 

  13. Manzanares, P., de Graaff, L. H., & Visser, J. (1997). FEMS Microbiology Letters, 157(2), 279–283.

    CAS  Google Scholar 

  14. Manzanares, P., et al. (2000). Letters in Applied Microbiology, 31(3), 198–202.

    Article  CAS  Google Scholar 

  15. Monti, D., et al. (2004). Biotechnology and Bioengineering, 87(6), 763–771.

    Article  CAS  Google Scholar 

  16. Scaroni, E., et al. (2002). Letters in Applied Microbiology, 34(6), 461–465.

    Article  CAS  Google Scholar 

  17. Gabor, F., & Pittner, F. (1984). Hoppe-Seylers Zeitschrift Fur Physiologische Chemie, 365(9), 914–914.

    Google Scholar 

  18. Turecek, P., & Pittner, F. (1986). Applied Biochemistry and Biotechnology, 13(1), 1–13.

    Article  CAS  Google Scholar 

  19. Tsen, H. Y., Tsai, S. Y., & Yu, G. K. (1989). Journal of Fermentation and Bioengineering, 67(3), 186–189.

    Article  CAS  Google Scholar 

  20. Puri, M., Marwaha, S. S., & Kothari, R. M. (1996). Enzyme and Microbial Technology, 18(4), 281–285.

    Article  CAS  Google Scholar 

  21. Norouzian, D., et al. (1999). World Journal of Microbiology & Biotechnology, 15(4), 501–502.

    Article  CAS  Google Scholar 

  22. Biselli, M., Krugl, U., & Wandrey, C. (1995). In K. Drauz, & H. Waldman (Eds.), Enzyme catalysis in organic synthesis—a comprehensive handbook, Vol. 1 (pp. 89–155). Weinheim: VCH.

    Google Scholar 

  23. Klibanov, A. M. (1983). Advances in Applied Microbiology, 29, 1–28.

    Article  CAS  Google Scholar 

  24. Bisswanger, H. (1999). Enzymkinetik: Theorie und methoden (3rd ed.). Weinheim: Wiley-VCH.

    Google Scholar 

  25. Sadana, A. (1991). Biocatalysis: Fundamentals of enzyme deactivation kinetics. New Jersey: Prentice Hall.

    Google Scholar 

  26. Bradford, M. M. (1976). Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  Google Scholar 

  27. Aktinson, C. (1992). Optimum experimental designs. Oxford: Clarendon.

    Google Scholar 

  28. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistic for experimenters: An introduction to design, data analysis and model building. New York: Wiley.

    Google Scholar 

  29. Khuri, A. I., & Cornell, J. A. (1987). Response surfaces, design and analyses. New York: Marcel Dekker.

    Google Scholar 

  30. Rasch, D., Verdooren, L. R., & Gowers, J. I. (1999). Grundlagen der Planung und Auswertung von Versuchen und Erhebungen, R. Oldenbourg Verlag, München, Wien

  31. BenoitMarquie, F., et al. (1997). Journal of Photochemistry and Photobiology A—Chemistry, 108(1), 65–71.

    Article  CAS  Google Scholar 

  32. Oliveros, E., et al. (2000). In Proceedings of the third Asia pacific conference (pp. 577–581). Singapore, Work Scientific.

  33. Oliveros, E., et al. (1997). Chemical Engineering and Processing, 36(5), 397–405.

    Article  CAS  Google Scholar 

  34. NEMRODW LPRAI, B.P. no. 7, Marseille - Le Merlan, 13311 Marseille Cedex 14, France. Retrieved from www.nemrodw.com.

  35. Scopes, R. (1994). Protein purification, principles and practice (3rd ed.). New York: Springer.

    Google Scholar 

  36. Mozhaev, V. V. (1993). Trends in Biotechnology, 11(3), 88–95.

    Article  CAS  Google Scholar 

  37. Greco, G., et al. (1992). In Stability and stabilization of enzymes (Proceedings of an International Symposium) (pp. 429–435). Maastricht: Elsevier Science.

  38. Prazeres, D. M. F., Garcia, F. A. P., & Cabral, J.M. S. (1992). In Stability and stabilization of enzymes (Proceedings of an International Symposium) (pp. 445–450). Maastricht: Elsevier Science.

Download references

Acknowledgments

The authors would like to thank the financial support of this project, carried out in the framework of a EU-CRAFT project (1999-72243) entitled “Integrated process for bio-surfactant synthesis at competitive cost allowing for their application in household cleaning and bio-remediation” (InBioSynAp). We also thank Rebecca Lorenz for her helpful practical input during the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Magario.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magario, I., Neumann, A., Oliveros, E. et al. Deactivation Kinetics and Response Surface Analysis of the Stability of α-l-Rhamnosidase from Penicillium decumbens . Appl Biochem Biotechnol 152, 29–41 (2009). https://doi.org/10.1007/s12010-008-8204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8204-5

Keywords

Navigation