Skip to main content
Log in

Enhanced Production of High-Quality Biomass, δ-Aminolevulinic Acid, Bilipigments, and Antioxidant Capacity of a Food Alga Nostochopsis lobatus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The growing interest in natural food has raised the global demand for nutraceuticals. We studied enhanced production of biomass, delta-aminolevulinic acid (δ-ALA), bili pigments and antioxidant capacity of a food alga Nostochopsis lobatus in a full-factorial (three level) design with supplemental Zn, glutamine, and Zn + glutamine in batch culture. Production of biomass, pigments, and antioxidant capacity all were higher under immobilized cell cultures in comparison to free cell cultures. Maximum biomass (2,390 mg dry wt l−1), δ-ALA (2.715 μg mg−1 dry wt h−1), phycocyanin (98.50 mg g−1 dry wt), phycoerythrin (158.0 mg g−1 dry wt), and antioxidant capacity (140.50 μmoles ascorbic acid equivalent capacity g−1 fresh wt) were recorded when Zn and glutamine were supplemented together in the growth medium at pH 7.8. These effects were found to be significantly related to the activities of glutamine synthetase (GSmax: 490.2 nmoles mg protein−1 min−1), glutamate synthase (GOGATmax: 27.0 nmoles mg protein−1 min−1), and glutamate dehydrogenase (GDHmax: 159.9 nmoles mg protein−1 min−1). This study shows that N. lobatus could be a promising bioresource for the production of nutritionally rich biomass, δ-ALA, bili pigments, and antioxidants. Use of immobilized cells in batch culture supplemented with Zn and glutamine could be an effective approach for scaling up production for commercial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kumar, K., Lakshmanan, A., & Kannaiyan, S. (2003). Indian Journal of Microbiology, 43, 9–16.

    Google Scholar 

  2. Thajuddin, N., & Subramaniam, G. (2005). Current Science, 29, 47–57.

    Google Scholar 

  3. Parikh, A., & Madamwar, D. (2006). Bioresource Technology, 97, 1822–1827.

    Article  CAS  Google Scholar 

  4. Colla, L. M., Reinehr, C. O., Reichert, C., & Costa, J. A. V. (2007). Bioresource Technology, 98, 1489–1493.

    Article  CAS  Google Scholar 

  5. Boyde, M. R. (1997). Antimicrobial Agents and Chemotherapy, 41, 1521–1530.

    Google Scholar 

  6. Pandey, U. (2003). Indian Journal of Applied and Pure Biology, 18, 27–30.

    Google Scholar 

  7. Sies, H. (1996). Antioxidants in disease, mechanisms and therapy. New York: Academic Press.

    Google Scholar 

  8. Jose, N., & Janardhanan, K. K. (2000). Current Science, 79, 941–943.

    Google Scholar 

  9. Devasagayan, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. K., Ghaskadbi, S., & Lele, R. D. (2004). Journal of Association of Physicians of India, 7, 794–804.

    Google Scholar 

  10. Mishra, A., Bapat, M. M., Tilak, J. C., & Devasagayam, T. P. A. (2006). Current Science, 91, 90–93.

    CAS  Google Scholar 

  11. Hirata, T., Tanak, M., Ooike, M., Tsunomura, T., & Sakaguchi, M. (2000). Journal of Applied Phycology, 12, 435–439.

    Article  CAS  Google Scholar 

  12. Romay, C., Gonzalez, R., Ledon, N., Remirez, D., & Rimbau, V. (2003). Current Protein and Peptide Science, 4, 207–216.

    Article  CAS  Google Scholar 

  13. Döring, F., Walter, J., Will, J., Föcking, M., Boll, M., Amasheh, S., et al. (1998). Journal of Clinical Investigation, 101, 2761–2767.

    Article  Google Scholar 

  14. Inskeep, W. P., & Bloom, P. R. (1985). Plant Physiology, 77, 483–485.

    CAS  Google Scholar 

  15. Bennett, A., & Bogorad, L. (1973). Journal of Cell Biology, 58, 419–435.

    Article  CAS  Google Scholar 

  16. Hirosawa, T., & Miyachi, S. (1983). Plant Science Letters, 28, 291–298.

    CAS  Google Scholar 

  17. Shapiro, B. M., & Stadtman, E. R. (1970). In H. Tabor, & C. W. Tabor (Eds.) Methods in enzymology pp. 910–922. New York: Academic Press.

    Google Scholar 

  18. Thevanathan, R. (1980). Ph.D. Thesis, University of Madras, India.

  19. Ahmed, I., & Hellebust, J. A. (1984). Plant Physiology, 76, 658–663.

    Article  Google Scholar 

  20. Cao, G., & Prior, R. L. (1999). Methods in Enzymology, 299, 50–62.

    Article  CAS  Google Scholar 

  21. Benzie, I. F., & Strain, J. J. (1996). Analytical Biochemistry, 239, 70–76.

    Article  CAS  Google Scholar 

  22. Mahajan, G., & Kamat, M. (1995). Applied Microbiology and Biotechnology, 43, 466–469.

    Article  CAS  Google Scholar 

  23. Dillion, J. C., & Phuc, A. P. (1995). World Review of Nutrition and Dietetics, 77, 32–46.

    Google Scholar 

  24. Emodi, A. (1978). Food Technology, 32, 38–42.

    CAS  Google Scholar 

  25. Rodriguez, H., Rivas, J., Guerrero, M. G., & Losada, M. (1989). Applied and Environmental Microbiology, 55, 758–760.

    CAS  Google Scholar 

  26. O’ Neill, G. P. O., Peterson, D. M., Schön, A., Chen, M. W., & Söll, D. (1988). Journal of Bacteriology, 170, 3810–3816.

    CAS  Google Scholar 

  27. Bannister, J. V., Bannister, W. H., & Rotilio, G. (1987). Critical Reviews in Biochemistry, 22, 111–180.

    Article  CAS  Google Scholar 

  28. Herrero, M., Martin-Alvarez, P. J., Senorans, J., Cifuentes, A., & Ibanez, E. (2005). Food Chemistry, 93, 417–423.

    Article  CAS  Google Scholar 

  29. Tilak, J. C., Banerjee, M., Mohan, H., & Devasagayam, T. P. A. (2004). Phytotheraphy Research, 18, 798–804.

    Article  Google Scholar 

  30. Cao, G., Sofic, E., & Prior, R. L. (1996). Journal of Agricultural and Food Chemistry, 44, 3426–3431.

    Article  CAS  Google Scholar 

  31. Powel, S. R. (2000). Journal of Nutrition, 130, 1447S–1454S.

    Google Scholar 

  32. Zago, M. P., & Oteiza, P. I. (2001). Free Radical Biology & Medicine, 31, 266–274.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Prof. H. R. Tyagi, former Convener, Department of Environmental Sciences, MLS University, for laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, U., Pandey, J. Enhanced Production of High-Quality Biomass, δ-Aminolevulinic Acid, Bilipigments, and Antioxidant Capacity of a Food Alga Nostochopsis lobatus . Appl Biochem Biotechnol 150, 221–231 (2008). https://doi.org/10.1007/s12010-008-8149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8149-8

Keywords

Navigation