Skip to main content
Log in

Studies on Improving the Immobilized Bead Reusability and Alkaline Protease Production by Isolated Immobilized Bacillus circulans (MTCC 6811) Using Overall Evaluation Criteria

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study uses an overall evaluation criterion for improving the immobilized bead reusability and extracellular enzyme production by immobilized cells by assigning relative weightage to bead reusability, enzyme production, and cell leakage. Initially, alkaline protease production by alginate-immobilized Bacillus circulans (MTCC 6811) was analyzed using L18 orthogonal array (OA). The resultant optimized parameters were further fine-tuned with L9 OA experimentation. At L18-OA analysis, inoculum level and CaCl2 had least influence at individual level. At the interactive level, incubation time revealed maximum and minimum interaction with sodium alginate and glucose concentration, respectively. L9 experimentation indicated that glucose concentration contributed the major influence on protease production followed by matrix material and incubation time at the individual level, and at the interactive level, matrix concentration played a vital role by interacting with incubation time, inoculum, and CaCl2 concentration. All selected input parameters showed significance either at individual level or interactive in both OAs. Scanning electron microscopy analysis showed bacterial morphology variation with variation of matrix concentration. Overall, glucose concentration depicted a major influence at the individual level for the enzyme production. Significant improvement, approximately 147%, in enzyme yield was observed. Economic enzyme production by immobilized B. circulans is regulated by interactive influence of fermentation parameters, which influence the immobilized bead stability, reusability, and enzyme yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zamost, B. L., Nielsen, H., & Starnes, R. (1991). Journal of Industrial Microbiology, 8, 71–82.

    Article  CAS  Google Scholar 

  2. Aasling, D., Gormsen, E., & Malmos, H. (1991). Journal of Chemical Technology and Biotechnology, 50, 321–330.

    Google Scholar 

  3. Wiseman, A. (1993). Journal of Chemical Technology and Biotechnology, 53, 3–13.

    Google Scholar 

  4. Turk, B. (2006). Nature Reviews Drug Discovery, 5, 785–799.

    Article  CAS  Google Scholar 

  5. Kumar, C. G., & Takagi, H. (1999). Biotechnology Advances, 17, 561–594.

    Article  CAS  Google Scholar 

  6. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  7. Prakasham, R. S., Subba Rao, Ch., Sreenivas Rao, R., & Sarma, P. N. (2005). Biotechnology Progress, 21, 1380–1388.

    Article  CAS  Google Scholar 

  8. Prakasham, R. S., Subba Rao, Ch., & Sarma, P. N. (2006). Bioresource Technology, 97, 1449–1454.

    Article  CAS  Google Scholar 

  9. Subba Rao, Ch., Sathish, T., Mahalaxmi, M., Suvarna Laxmi, G., Sreenivas Rao, R., & Prakasham, R. S. (2007). Journal of Applied Microbiology doi:10.1111/j.1365–2672.2007.03605.x (in press).

  10. Prakasham, R. S., Kuriakose, B., & Ramakrishna, S. V. (1999). Applied Biochemistry and Biotechnology, 82, 127–134.

    Article  CAS  Google Scholar 

  11. Prakasham, R. S., Subba Rao, Ch., Sreenivas Rao, R., & Sarma, P. N. (2005). Applied Biochemistry and Biotechnology, 120, 133–144.

    Article  CAS  Google Scholar 

  12. Srinivasulu, B., Prakasham, R. S., Annapurna, J., Srinivas, S., Ellaiah, P., & Ramakrishna, S. V. (2002). Process Biochemistry, 38, 593–598.

    Article  CAS  Google Scholar 

  13. Sreenivas Rao, R., Prakasham, R. S., Krishna Prasad, K., Rajesham, S., Sarma, P. N., & Venkateswar Rao, L. (2004). Process Biochemistry, 39, 951–956.

    Article  Google Scholar 

  14. Zhang, X., Bury, S., DiBiasio, D., & Miller, J. E. (1989). Journal of Industrial Microbiology, 4, 239–246.

    Article  Google Scholar 

  15. Galazzo, J. L., & Bailey, J. E. (1990). Biotechnology and Bioengineering, 36, 417–426.

    Article  CAS  Google Scholar 

  16. Ramkrishna, S. V., & Prakasham, R. S. (1999). Current Science, 77, 87–100.

    Google Scholar 

  17. Himabindu, M., Ravichandra, P., Vishalakshi, K., & Annapurna, J. (2006). Applied Biochemistry and Biotechnology, 134, 143–154.

    Article  CAS  Google Scholar 

  18. Prakasham, R. S., Subba Rao, Ch., Sreenivas Rao, R. S., Lakshmi, G. S., & Sarma, P. N. (2007a). Journal of Applied Microbiology, 102, 1382–1391.

    Article  CAS  Google Scholar 

  19. Prakasham, R. S., Subba Rao, Ch., Sreenivas Rao, R., & Sarma, P. N. (2007b). Journal of Applied Microbiology, 102, 204–211.

    Article  CAS  Google Scholar 

  20. Ravichandra, P., Subhakar, Ch., & Annapurna, J. (2007). Biochemical Engineering Journal, 34, 185–192.

    Article  Google Scholar 

  21. Bashan, Y. (1986). Applied and Environmental Microbiology, 51, 1089–1098.

    Google Scholar 

  22. Hagihara, B., Matsubara, H., Nakai, M., & Okunuki, K. (1958). Journal of Biochemistry, 45, 185–194.

    CAS  Google Scholar 

  23. Roy, R. K. (1990). A primer on the Taguchi method. Dearborn, MI: Society of Manufacturing Engineers.

    Google Scholar 

  24. Roy, R. K. (2001). Taguchi approach: 16 steps to product and process improvement. New York: Wiley.

    Google Scholar 

  25. Beshay, U. (2003). African Journal of Biotechnology, 2, 60–65.

    CAS  Google Scholar 

  26. Nava, S., Roisin, C., & Barbotin, J.-N. (1996). In: R. H. Wijffels, R. M. Buitelaar, C. Bucke, J. Tramper (Eds.). Progress in Biotechnology, 11, 39–46.

  27. Sreenivas Rao, R., Pavana Jyothi, Ch., Prakasham, R. S., Sarma, P. N., & Venkateswar Rao, L. (2006). Bioresource Technology, 97, 1974–1978.

    Article  Google Scholar 

  28. Fumi, M. D., Silva, A., Battistotti, G., & Golagrande, O. (1992). Biotechnology Letters, 14, 605–608.

    Article  CAS  Google Scholar 

  29. Elibol, M., & Moreira, A. R. (2003). Process Biochemistry, 38, 1445–1450.

    Article  CAS  Google Scholar 

  30. Prakasham, R. S., Sreenivas Rao, R., Subba Rao, Ch., & Sarma, P. N. (2005). Indian Journal Biotechnology, 4, 353–357.

    Google Scholar 

Download references

Acknowledgment

We are grateful to Dr. R. K. Roy, president, Nutek, USA, for providing Qualitek-4 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Prakasham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subba Rao, C., Madhavendra, S.S., Sreenivas Rao, R. et al. Studies on Improving the Immobilized Bead Reusability and Alkaline Protease Production by Isolated Immobilized Bacillus circulans (MTCC 6811) Using Overall Evaluation Criteria. Appl Biochem Biotechnol 150, 65–83 (2008). https://doi.org/10.1007/s12010-008-8147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8147-x

Keywords

Navigation