Skip to main content
Log in

Effect of Agitation and Aeration Rates on Chitinase Production Using Trichoderma virens UKM1 in 2-l Stirred Tank Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Shrimps have been a popular raw material for the burgeoning marine and food industry contributing to increasing marine waste. Shrimp waste, which is rich in organic compounds is an abundant source of chitin, a natural polymer of N-acetyl-d-glucosamine (GluNac), a reducing sugar. For this respect, chitinase-producing fungi have been extensively studied as biocontrol agents. Locally isolated Trichoderma virens UKM1 was used in this study. The effect of agitation and aeration rates using colloidal chitin as control substrate in a 2-l stirred tank reactor gave the best agitation and aeration rates at 200 rpm and 0.33 vvm with 4.1 U/l per hour and 5.97 U/l per hour of maximum volumetric chitinase activity obtained, respectively. Microscopic observations showed shear sensitivity at higher agitation rate of the above system. The oxygen uptake rate during the highest chitinase productivity obtained using sun-dried ground shrimp waste of 1.74 mg of dissolved oxygen per gram of fungal biomass per hour at the k L a of 8.34 per hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sachindra, N. M., & Mahendrakar, N. S. (2005). Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresearch Technology, 96, 1195–1200.

    Article  CAS  Google Scholar 

  2. Coward-Kelly, G., Agbogbo, F. K., & Holtzapple, M. T. (2006). Lime treatment of shrimp head waste for the generation of highly digestible animal feed. Bioresearch Technology, 97, 1515–1520.

    Article  CAS  Google Scholar 

  3. Tharanathan, R. N., & Kittur, F. S. (2003). Chitin—The undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition, 43(1), 61–87.

    Article  CAS  Google Scholar 

  4. Gildberg, A., & Stenberg, E. (2001). A new process for advanced utilisation of shrimp waste. Process Biochemistry, 36(8–9), 809–812.

    Article  CAS  Google Scholar 

  5. Yen, Y. H., Li, P. L., Wang, C. L., & Wang, S. L. (2006). An antifungal protease produced by Pseudomonas aeruginosa M-1001 with shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology, 39, 311–317.

    Article  CAS  Google Scholar 

  6. Liang, T. W., Lin, J. J., Yen, Y. H., Wang, C. L., & Wang, S. L. (2006). Purification and characterization of a protease extracellularly produced by Monascus purpureus CCRC31499 in a shrimp and crab shell powder medium. Enzyme and Microbial Technology, 38(1–2), 74–80.

    Article  CAS  Google Scholar 

  7. Matsumoto, Y., Saucedo-Castaneda, G., Revah, S., & Shirai, K. (2004). Production of a β-N-acetylhexosaminidase of Verticillium lecanii by solid state and submerged fermentations utilizing shrimp waste silage as substrate and inducer. Process Biochemistry, 39, 665–671.

    Article  CAS  Google Scholar 

  8. Wang, S. L., Yen, Y. H., Tzeng, G. C., & Hsieh, C. (2005). Production of antifungal materials by bioconversion of shellfish chitin wastes fermented by Pseudomonas fluorescens K-188. Enzyme and Microbial Technology, 36, 49–56.

    Article  Google Scholar 

  9. Wang, S. L., Hsiao, W. J., & Chang, W. T. (2002a). Purification and characterization of an antimicrobial chitinase extracellularly produced by Monascus purpureus CCRC31499 in a shrimp and crab shell powder medium. Journal of Agricultural and Food Chemistry, 50, 2249–2255.

    Article  CAS  Google Scholar 

  10. Lorito, M., diPietro, A., Hayes, C. K., Woo, S. L., & Harman, G. E. (1993). Antifungal, synergistic interaction between chitinolytic enzymes from Trichoderma harzianum and Enterobacter cloacae. Phytopath, 83, 721–728.

    Article  CAS  Google Scholar 

  11. Fenton, D. M., & Eveleigh, D. E. (1981). Purification and mode of action of a chitinase from Penicillium islandicus. Journal of General Microbiology, 126, 151–154.

    CAS  Google Scholar 

  12. Rose, M. D., Winston, F., & Hieter, P. (1990). Methods in yeast genetics: A laboratory course manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  13. Aloise, P. A., Lumme, M., & Aynes C. A. (1996). N-Acetyl-d-glucosamine production from chitin-waste using chitinases from Serratia marcescens. In: R.A.A. Muzzarelli (Ed.). Chitin Enzymology, 2, 581–594.

  14. Usui, T., Hayashi, Y., Nanjo, F., Sakai, K., & Ishido, Y. (1987). Transglycosylation reaction of a chitinase purified from Nocardia orientalis. Biochimica et Biophysica Acta, 923, 302–309.

    CAS  Google Scholar 

  15. Duo-Chuan, L. (2006). Review of fungal chitinases. Mycopathologia, 161, 345–360.

    Article  Google Scholar 

  16. De La Cruz, J., Hidalgo-Gallego, A., Lora, J. M., Benitez, T., & Pintor-Toro, J. A. (1992). Isolation and characterization of three chitinases from Trichoderma harzianum. European Journal of Biochemistry, 206, 859–867.

    Article  Google Scholar 

  17. Gokul, B., Lee, J. H., Song, K. B., Rhee, S. K., Kim, C. H., & Panda, T. (2000). Characterization and applications of chitinases from Trichoderma harzianum. Bioprocess Engineering, 23, 691–694.

    Article  CAS  Google Scholar 

  18. Felse, P. A., & Panda, T. (2000). Submerged culture production of chitinase by Trichoderma harzianum in stirrer tank bioreactors—The influence of agitator speed. Biochemical Engineering Journal, 4, 115–120.

    Article  CAS  Google Scholar 

  19. Kawachi, I., Fujieda, T., Ujita, M., Ishii, Y., Yamagishi, K., Sato, H., et al. (2001). Purification and properties of extracellular chitinases from the parasitic Fungus Isaria japonica. Journal of Bioscience and Bioengineering, 92, 554–549.

    Article  Google Scholar 

  20. Shuler, M. L., & Kargi, F. (2002). Bioprocess engineering basic concepts (2nd ed.). USA: Prentice Hall.

    Google Scholar 

  21. Badino Jr, A. C., Facciotti, A. C. R., & Schmidell, W. (2000). Improving kLa determination in fungal fermentation, taking into account electrode response time. Journal of Chemical Technology and Biotechnology, 75, 469–474.

    Article  Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  23. Rojas-Avelizapa, L. I., Cruz-Camarillo, R., Guerrero, M. I., Rodriguez-Vazquez, R., & Ibarra, J. E. (1999). Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media. World Journal of Microbiology & Biotechnology, 15(2), 261–268.

    CAS  Google Scholar 

  24. Gomez-Ramirez, M., Rojas-Avelizapa, L. I., Rojas-Avelizapa, N. G., & Cruz-Camarillo, R. (2004). Colloidal chitin stained with remazol brilliant blue R, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases. Journal of Microbiological Methods, 56, 213–219.

    Article  CAS  Google Scholar 

  25. Scopes, R. K. (1994). Protein purification principles and practice (3rd ed.). USA: Springer.

    Google Scholar 

  26. Bailey, J. E., & Ollis, D. F. (1986). Biochemical engineering fundamentals (2nd ed.). Singapore: McGraw-Hill International Editions.

    Google Scholar 

  27. Amanullah, A., Blair, R., Nienow, A. W., & Thomas, C. R. (1999). Effects of agitation intensity on mycelia morphology and protein production in chemostat cultures of recombinant Aspergillus oryzae. Biotechnology and Bioengineering, 62, 434–446.

    Article  CAS  Google Scholar 

  28. Amanullah, A., Christensen, L. H., Hansen, K., Nienow, A. W., & Thomas, C. R. (2002). Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnology and Bioengineering, 77, 815–826.

    Article  CAS  Google Scholar 

  29. Cui, Y. Q., Okkerse, W. J., van der Lans, R. G. J. M., & Luyben, K. C. H. A. M. (1998a). Modeling and measuring of fungal growth and morphology in submerged fermentations. Biotechnology and Bioengineering, 60, 216–229.

    Article  CAS  Google Scholar 

  30. Cui, Y. Q., van der Lans, R. G. J. M., Giuseppin, M. L. F., & Luyben, K. C. H. A. M. (1998b). Influence of fermentation conditions and scale on the submerged fermentation of Aspergillus awamori. Enzyme and Microbial Technology, 23, 157–167.

    Article  CAS  Google Scholar 

  31. Li, Z. J., Shukla, V., Wenger, K. S., Fordyce, A. P., Pedersen, A. G., & Marten, M. R. (2002). Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Biotechnology Progress, 18, 437–444.

    Article  CAS  Google Scholar 

  32. Rast, D. M., Baumgartner, D., Mayer, C., & Hollenstein, G. O. (2003). Cell wall-associated enzymes in fungi. Phytochemistry, 64, 339–366.

    Article  CAS  Google Scholar 

  33. Ulhoa, C. J., & Peberdy, J. F. (1991). Purification and characterization of an extracellular chitobiase from Trichoderma Harzianum. Current Microbiology, 23, 285–289.

    Article  CAS  Google Scholar 

  34. Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22, 189–259.

    Article  CAS  Google Scholar 

  35. Cui, Y. Q., van der Lans, R. G. J. M., & Luyben, K. C. H. A. M. (1997a). Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnology and Bioengineering, 55, 715–726.

    Article  CAS  Google Scholar 

  36. Cui, Y. Q., van der Lans, R. G. J. M., & Luyben, K. C. H. A. M. (1997b). Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation. Biotechnology and Bioengineering, 57, 409–419.

    Article  Google Scholar 

  37. Wongwicharn, A., McNeil, B., & Harvey, L. M. (1999). Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnology and Bioengineering, 65, 416–424.

    Article  CAS  Google Scholar 

  38. Wikipedia (Chlamydospore) online encyclopaedia. Retrieved March 15, 2007 from http://en.wikipedia.org/wiki/Chlamydospore.

  39. Zhuang, J. H., Gao, Z. G., Liu, X., Chen, J., Yang, Y., & Huang, Y. Q. (2005). Effect of fermentation factors on spore types of Trichoderma strain 23. Chinese Journal of Biological Control, 21(1), 37–40.

    Google Scholar 

  40. Li, L., Qu, Q., Tian, B., & Zhang, K. Q. (2005). Induction of chlamydospores in Trichoderma harzianum and Gliocladium roseum by antifungal compounds produced by Bacillus subtilis C2. Phytopathology, 153, 686–693.

    Article  CAS  Google Scholar 

  41. Finkelstein, D. B., & Ball, C. (1992). Biotechnology of filamentous fungi technology and products. USA: Butterworth–Heinemann.

    Google Scholar 

  42. Schumpe, A. (1993). The estimation of gas solubilities in salt solutions. Chemical Engineering Science, 48(1), 153–158.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledged the financial support from the Ministry of Science, Technology and Innovation, Malaysia (MOSTI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraini Abd-Aziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd-Aziz, S., Fernandez, C.C., Salleh, M.M. et al. Effect of Agitation and Aeration Rates on Chitinase Production Using Trichoderma virens UKM1 in 2-l Stirred Tank Reactor. Appl Biochem Biotechnol 150, 193–204 (2008). https://doi.org/10.1007/s12010-008-8140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8140-4

Keywords

Navigation