Skip to main content
Log in

Molecular cloning and biochemical characterization of a family-9 endoglucanase with an unusual structure from the gliding bacteria Cytophaga hut chinsonii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cytophaga hutchinsonii was originally isolated from sugarcane piles. This microorganism therefore probably produces an array of enzymes allowing it to digest cellulosic substrates. C. hutchinsonii thus represents a rich source of potentially effective cellulase enzymes that can be harnessed for conversion of biomass to simple sugars. These sugars can then be used as feedstock for ethanol production or other chemical syntheses. In this study, we report the PCR cloning of an endoglucanase gene (Cel9A) from C. hutchinsonii using degenerated primers directed at the catalytic domain. Alignment of the amino acids sequence revealed that Cel9A has a gene structure totally different from the other known cellulose degraders. The most striking feature of this cloned protein is the absence of a cellulose-binding domain (CBD), which to date was believed to be imperative in cellulose hydrolysis. Consequently, the Cel9A gene, encoding β-1,4 endoglucanase from C. hutchinsonii was over-expressed in Escherichia coli with a His-Tag based expression vector. The resulting polypeptide, with a molecular mass of 105 KDa, was purified from cell extracts by affinity chromatography on cellulose. Mature Cel9A was optimally active at pH 5.0 and 45°C. The enzyme efficiently hydrolyzes carboxymethyl-cellulose (CMC). Analysis of CMC and filter paper hydrolysis suggests that Cel9A is a nonprocessive enzyme with endo-cellulase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson, D. B. and Irwin, D. (1999), Adv. Biochem. Eng. Biotech. 65, 1–21.

    CAS  Google Scholar 

  2. Lynd, L. R. (1996), Annu. Rev. Energy Environm. 21, 403–465.

    Article  Google Scholar 

  3. Leschine, S. B. (1995), Annu. Rev. Microbiol. 49, 399–426.

    Article  CAS  Google Scholar 

  4. Knowles, J., Lehtovaara, P., and Teeri, T. (1987), Trends Biotechnol. 5, 255–261.

    Article  CAS  Google Scholar 

  5. Glick, B. R. and Pasternak, J. J. (1989), Biotech. Adv. 7, 361–386.

    Article  CAS  Google Scholar 

  6. Lynd, L. R., Weimer, P. J., Willem, H., van Zyl, W. H., and Pretorius, I. S. (2002), Microb. Mol. Bio. Rev. 66, 506–577.

    Article  CAS  Google Scholar 

  7. Sambrook, J., Fritsch, E. F., and Miniatis, T. (1989), in Molecular Cloning—A laboratory Manual, Second ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  8. Dnastar (2002), Lasergene software, www.DNASTAR.com.

  9. Clustalw (2002), EBI—European Bioinformatics Institute. www.ebi.ac.uk/clustalw.

  10. CodeHop (2002), Consensus Degenerate Hybrid Oligonucleotide Primers— www.bioinformatics.weizmann.ac.il/codehop.html.

  11. Qiagen. DNA Cleanup Protocol (2003), www.qiagen. com/Products/DnaCleanup.

  12. Genecodes (2002), Sequencher. www.genecodes.com/ sequencher.

  13. Promega (2003), pGEM-T and pGEM-T Easy Vector Systems Technical Manual, TM042. www.promega.com/tbs/tm042/tm042.pdf.

  14. Novagen (2003), pET28 His-Tag Vector system Manual, www.novagen.com.

  15. Zhou, W., Irwin, D., Kousen, J. E. and Wilson, D. B. (2004), Biochemistry 43, 9655–63.

    Article  CAS  Google Scholar 

  16. NIH (National Institute of Health) (2002), National Center for Biotechnology Information. www.ncbi.nlm.nih.gov.

  17. PROSITE. Expasy Proteomics Server (2002), www.expasy.org/prosite.

  18. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  19. Bradford, M. (1976), Anal. Biochem. 72, 248–252.

    Article  CAS  Google Scholar 

  20. Lowry, O. H. and Rosenbrough, A. L. (1951), J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  21. Wilson, D. B. (2004), The Chemical Record, 4, 72–82.

    Article  CAS  Google Scholar 

  22. CBS—Center for Biological Sequence Analysis (2005), www.cbs.dtu.dk/services/SignalP

  23. Rosano, C., Bisso, A., Izzo, G., et al. (2000), J. Mol. Biol. 303, 77–91.

    Article  CAS  Google Scholar 

  24. Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L., and Mornon, J. P. (1989), Gene 81, 83–95.

    Article  CAS  Google Scholar 

  25. Degani, O., Gepstein, S., and Dosoretz, C. (2004), J. Biotechn. 107, 265–273.

    Article  CAS  Google Scholar 

  26. Lu-Shan, W., Jie, L., Yu-Zhong, Z., Yue, Z., and Pei-Ji, G. (2003), J. Mol. Catal., B Enzym. 24, 27–38.

    Article  Google Scholar 

  27. Cavaco-Paulo, A., Morgado, J., Andreaus, J., and Kilburn, D. (1999), Enzyme Microb. Technol. 25, 639–643.

    Article  CAS  Google Scholar 

  28. Carrard, M. L., Forro, L. M., and Pekker, S. (1996), Synthetic Metals 80, 29–34.

    Article  Google Scholar 

  29. Lemos, M. A., Teixeira, M. R. M., Domingues, M., and Gama, F. M. (2003), Enzyme Microb. Technol. 32, 35–40.

    Article  CAS  Google Scholar 

  30. Linder, M. and Teeri, T. (1997), Proc. Natl. Acad. Sci. USA 93, 12,251–12,255.

    Google Scholar 

  31. Kerita, S., Kazuo, S., and Kunio, A. (1996), J. Ferment. Bioeng. 81, 553–556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford Louime.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louime, C., Abazinge, M., Johnson, E. et al. Molecular cloning and biochemical characterization of a family-9 endoglucanase with an unusual structure from the gliding bacteria Cytophaga hut chinsonii . Appl Biochem Biotechnol 141, 127–138 (2007). https://doi.org/10.1007/s12010-007-9215-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-9215-3

Index Entries

Navigation