Skip to main content
Log in

Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The lead (II) biosorption potential of Aspergillus parasiticus fungal biomass has been investigated in a batch system. The initial pH, biosorbent dosage, contact time, initial metal ion concentrations and temperature were studied to optimize the biosorption conditions. The maximum lead (II) biosorption capacity of the fungal biosorbent was found as 4.02 × 10−4 mol g−1 at pH 5.0 and 20°C. The biosorption equilibrium was reached in 70 min. Equilibrium biosorption data were followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. In regeneration experiments, no significant loss of sorption performance was observed during four biosorption-desorption cycles. The interactions between lead (II) ions and biosorbent were also examined by FTIR and EDAX analysis. The results revealed that biosorption process could be described by ion exchange as dominant mechanism as well as complexation for this biosorbent. The ion exchange mechanism was confirmed by E value obtained from D-R isotherm model as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, H. K., Park, B. Y. and Kim, D. S. (2001) Water Res. 35, 3551–3556.

    Article  CAS  Google Scholar 

  2. Mishra, K. P., Singh, V. K., Rani, R., et al. (2003) Toxicology 188, 251–259.

    CAS  Google Scholar 

  3. Gupta, V. K. and Ali, I. (2004) J. Colloid Interface Sci. 271, 321–328.

    Article  CAS  Google Scholar 

  4. Ikeda, M., Zhang, Z. W., Shimbo, S., et al. (2000) Sci. Total Environ. 249, 373–384.

    Article  CAS  Google Scholar 

  5. Tewari, N., Vasudevan, P., and Guha, B.K. (2005) Biochem. Eng. J. 23, 185–192.

    Article  CAS  Google Scholar 

  6. Iqbal, M. and Edyvean, R. G. J. (2004) Miner. Eng. 17, 217–223.

    Article  CAS  Google Scholar 

  7. Khattar, J. I. S., Sarma, T. A., and Singh, D. P. (1999) Enzyme Microb. Technol. 25, 564–568.

    Article  CAS  Google Scholar 

  8. Kratochvil, D. and Volesky, B. (1998) Trends Biotechnol. 16, 291–300.

    Article  CAS  Google Scholar 

  9. Kratochvil, D. and Volesky, B. (1998) Water Res. 32, 2760–2768.

    Article  CAS  Google Scholar 

  10. Vijayaraghavan, K., Jegan, J., Palanivelu, K., and Velan, M. (2004) J. Hazard. Mater. 113, 223–230.

    Article  CAS  Google Scholar 

  11. Park, D., Yun, Y. S., and Park, J. M. (2005) Chemosphere 60, 1356–1364.

    Article  CAS  Google Scholar 

  12. Goyal, N., Jain, S. C., and Banerjee, U. C. (2003) Adv. Environ. Res. 7, 311–319.

    Article  CAS  Google Scholar 

  13. Yan, G. and Viraraghavan, T. (2003) Water Res. 37, 4486–4496.

    Article  CAS  Google Scholar 

  14. Akar, T. and Tunali, S. (2006) Bioresour. Technol. 97, 1780–1787.

    Article  CAS  Google Scholar 

  15. Akar, T., Tunali, S., and Kiran, I. (2005) Biochem. Eng. J. 25, 227–235.

    Article  CAS  Google Scholar 

  16. Kiran, I., Akar, T., and Tunali, S. (2005) Process Biochem. 40, 3550–3558.

    Article  CAS  Google Scholar 

  17. Hawari, A. H. and Mulligan, C. N. (2006) Process. Biochem. 41, 187–198.

    Article  CAS  Google Scholar 

  18. Akar, T. and Tunali, S. (2005) Miner. Eng. 18, 1099–1109.

    Article  CAS  Google Scholar 

  19. Tunali, S., Çabuk, A., and Akar, T. (2006) Chem. Eng. J. 115, 203–211.

    Article  CAS  Google Scholar 

  20. Kapoor, A., Viraraghavan, T., and Cullimore, D.R. (1999) Bioresour. Technol. 70, 95–104.

    Article  CAS  Google Scholar 

  21. Deng, S. and Ting, Y. P. (2005) Water Res. 39, 2167–2177.

    Article  CAS  Google Scholar 

  22. Ozdemir, G., Ozturk, T., Ceyhan, N., Isler, R., and Cosar, T. (2003) Bioresour. Technol. 90, 71–74.

    Article  CAS  Google Scholar 

  23. Saeed, A., Iqbal, M., and Akhtar, M. W. (2005) J. Hazard. Mater. 117, 65–73.

    Article  CAS  Google Scholar 

  24. Tunali, S. and Akar, T. (2006) J. Hazard. Mater. 131, 137–145.

    Article  CAS  Google Scholar 

  25. Bai, S. R. and Abraham, T. E. (2001) Bioresour. Technol. 79, 73–81.

    Article  Google Scholar 

  26. Tangaromsuk, J., Pokethitiyook, P., Kruatrachue, M., and Upatham, E. S. (2002) Bioresour. Technol. 85, 103–105.

    Article  CAS  Google Scholar 

  27. Tunali, S., Akar, T., Özcan, A. S., Kiran, I., and Özcan, A. (2006) Sep. Purif. Technol. 47, 105–112.

    Article  CAS  Google Scholar 

  28. Gong, R., Ding, Y., Liu, H., Chen, Q., and Liu, Z. (2005) Chemosphere 58, 125–130.

    Article  CAS  Google Scholar 

  29. Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M., and Upatham, E. S. (2003) Environ. Pollut. 125, 385–392.

    Article  CAS  Google Scholar 

  30. Saeed, A., Akhter, M. W., and Iqbal, M. (2005) Sep. Purif. Technol. 45, 25–31.

    Article  CAS  Google Scholar 

  31. Costa, A. C. A. D. and Leite, S. G. F. (1991) Biotechnol. Lett. 13, 559–562.

    Article  Google Scholar 

  32. Öztürk, A., Artan, T., and Ayar, A. (2004) Colloids Surf. B 34, 105–111.

    Article  Google Scholar 

  33. Singh, K. K., Talat, M., and Hasan, S. H. (2006) Bioresour. Technol. 97, 2124–2130.

    Article  CAS  Google Scholar 

  34. Pandey, K. K., Prasad, G., and Singh, V. N. (1986) Water Air Soil Pollut. 27, 287–296.

    Article  Google Scholar 

  35. Li, Q., Wu, S., Liu, G., et al. (2004) Sep. Purif. Technol. 34, 135–142.

    Article  Google Scholar 

  36. Kaduková, J. and Virčková, E. (2005) Environ. Int. 31, 227–232.

    Article  Google Scholar 

  37. Langmuir, I. (1918) J. Amer. Chem. Soc. 40, 1361–1403.

    Article  CAS  Google Scholar 

  38. Weber, T. W. and Chakravorti, R. K. (1974) J. Amer. Inst. Chem. Eng. 20, 228–238.

    CAS  Google Scholar 

  39. Freundlich, H. M. F. (1906) Z. Phys. Chem. 57, 385–470.

    CAS  Google Scholar 

  40. Benhammou, A., Yaacoubi, A., Nibou, L., and Tanouti, B. (2005) J. Coll. Interface. Sci. 282, 320–326.

    Article  CAS  Google Scholar 

  41. Dubinin, M. M. and Radushkevich, L. V. (1947) Proc. Acad. Sci. USSR Phys. Chem. Sect. 55, 331–333.

    Google Scholar 

  42. Hobson, J. P. (1969) J. Phys. Chem. 73, 2720–2727.

    Article  CAS  Google Scholar 

  43. Hasany, S. M. and Chaudhary, M. H. (1996) Appl. Radiat. Isot. 47, 467–471.

    Article  CAS  Google Scholar 

  44. Dubey, S. S. and Gupta, R. K. (2005) Sep. Purif. Technol. 41, 21–28.

    Article  CAS  Google Scholar 

  45. Hall, K. R., Eagleton, L. C., Acrivos, A., and Vermeulen, T. (1966) Ind. Eng. Chem. Fundam. 5, 212–223.

    Article  CAS  Google Scholar 

  46. Gadd, G. M. and White, C. (1985) J. Gen. Microbiol. 131, 1875–1879.

    CAS  Google Scholar 

  47. Kuyucak, N. and Volesky, B. (1989) Biotechnol. Bioeng. 33, 823–831.

    Article  CAS  Google Scholar 

  48. Pethkar, A. V., Kulkarni, S. K., and Paknikar, K. M. (2001) Bioresour. Technol. 80, 211–215.

    Article  CAS  Google Scholar 

  49. Santhiya, D., Subramanian, S., and Natarajan, K. A. (2001) J. Coll. Interface. Sci. 235, 298–309.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Akar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akar, T., Tunali, S. & Çabuk, A. Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus . Appl Biochem Biotechnol 136, 389–405 (2007). https://doi.org/10.1007/s12010-007-9032-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-9032-8

Index Entries

Navigation