Skip to main content
Log in

Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology

A techno-economic analysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based bulk chemicals produced with WB. Current and future technology routes are evaluated for 15 products assuming prices of fermentable sugar between 70 ie/t and 400 ie/t and crude oil prices of US $25/barrel and US $50/barrel. The results are compared to current technology routes of petrochemical equivalents. For current state-of-the-art WB processes and a crude oil price of US $25/barrel, WB-based ethanol, 1,3-propanediol, polytrimethylene terephthalate and succinic acid are economically viable. Only three WB products are economically not viable for future technology: acetic acid, ethylene and PLA. Future-technology ethylene and PLA become economically viable for a higher crude oil price (US $50/barrel). Production costs plus profits of WB products decrease by 20–50% when changing from current to future technology for a crude oil price of US $25 per barrel and across all sugar prices. Technological progress in WB can thus contribute significantly to improved economic viability of WB products. A large-scale introduction of WB-based production of economically viable bulk chemicals would therefore be desirable if the environmental impacts are smaller than those of current petrochemical production routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EuropaBio (2005) Industrial or white biotechnology—a driver of sustainable growth in Europe, European Association for Bioindustries (EuropaBio), Brussels.

    Google Scholar 

  2. Patel, M., Crank, M., Dornburg, V., et al. Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources—the potential of White Biotechnology. The BREW Project, Utrecht University, Utrecht, Germany (2006).

    Google Scholar 

  3. Rogers, P. L. (2002) Australasian Biotechnology 12, 39–41.

    Google Scholar 

  4. Zanin, G. M., Santana, C. C., Bon, E. P. S., et al. (2000) Appl. Biochem. Biotech. 84, 1147–1162.

    Article  Google Scholar 

  5. Vink, E. T. H., Rábago, K. R., Glassner, D. A., and Gruber, P. R. (2003) Polymer Degrad. Stab. 80, 403–419.

    Article  CAS  Google Scholar 

  6. EuropeanCommission (2003) in 2003/30/EC pp 5, Official Journal of the European Union.

  7. Bachmann, R., Bastianelli, E., Riese, J., and Schlenzka, W. (2000) in The McKinsey Quarterly. pp. 92–99.

  8. Werpy, T. and Petersen, G. (2004) Top Value Added Chemicals from Biomass—Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas, NREL/TP-510-35523, National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  9. EuropaBio (2003) White Biotech: a gateway to a more sustainable future, The European Association for Bioindustries (EuropaBio), Brussels.

    Google Scholar 

  10. SRI (2001) Chemicals from renewable resources, PEP 236, SRI Consulting, Menlo Park, USA.

    Google Scholar 

  11. Hamelinck, C. N., van Hooijdonk, G., and Faaij, A. P. C. (2005) Biomass & Bioenergy 28, 384–410.

    Article  CAS  Google Scholar 

  12. O'Brien, D.J., Roth, L.H., and McAloon, A.J. (2000) J. Membr. Sci. 166, 105–111.

    Article  Google Scholar 

  13. Wooley, R., Ruth, M.F., Glassner, D.A., and Sheehan, J. (1999) Biotech. Progr. 15, 794–803.

    Article  CAS  Google Scholar 

  14. Qureshi, N. and Blascheck, H. P. (2001) J. Ind. Microbiol. Biotechnol. 27, 292–297.

    Article  CAS  Google Scholar 

  15. Zeikus, J. G., Jain, M. K., and Elankovan, P. (1999) Appl. Microbiol. Biotech. 51, 545–552.

    Article  CAS  Google Scholar 

  16. Landucci, R., Goodman, B., and Wyman, C. E. (1994) Appl. Biochem. Biotech. 45/46, 677–696.

    Article  Google Scholar 

  17. Lynd, L. R. and Wang, M. Q. (2004) J. Ind. Ecol. 7, 17–32.

    Article  Google Scholar 

  18. Dornburg, V., Patel, M., and Hermann, B. G. (submitted) Scenario projections for future market potentials of bio-based bulk chemicals. Environ. Sci. Tech.

  19. Hermann, B. G., Blok, K., and Patel, M. (submitted) Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ. Sci. Tech.

  20. Wyman, C. E. (2003) Biotech. Progr. 19, 254–262.

    Article  CAS  Google Scholar 

  21. Shih, I.-L., Shen, M.-H., and Van, Y.-T. (2006) Bioresource Technology 97, 1148–1159.

    Article  CAS  Google Scholar 

  22. Weissermel, K. and Arpe, H.-J. (2003) Industrial Organic Chemistry, 4th ed. Wiley-VCH, Weinheim.

    Google Scholar 

  23. Glenz, W. (2004) in Kunststoffe. pp 76–78.

  24. EU (2000) Competitiveness of the Chemical Industry Sector in the CEE Candidate Countries, Brussels.

  25. Campos, E.J., Qureshi, N., and Blascheck, H. P. (2002) Appl. Biochem. Biotech. 99, 553–576.

    Article  Google Scholar 

  26. Ezeji, T.C., Qureshi, N., and Blascheck, H.P. (2003) World J. Microbiol. Biotech. 19, 595–603.

    Article  CAS  Google Scholar 

  27. Lee, Y. Y., Balasubramanian, N., and Kim, J. S. (2001) Appl. Biochem. Biotech. 92, 367–376.

    CAS  Google Scholar 

  28. Huang, Y. L., Mann, K., Novak, J. M., and Yang, S. T. (1998) Biotech. Progr. 14, 800–806.

    Article  CAS  Google Scholar 

  29. Niu, W., Draths, K., and Frost, J. (2002) Biotech. Progr. 18, 201–211.

    Article  CAS  Google Scholar 

  30. Gryta, M., Morawski, A. W., and Tomaszewska, M. (2000) Catalysis Today 56, 159–165.

    Article  CAS  Google Scholar 

  31. Bayrock, D. and Ingledew, W. (2005) World J. Microbiol. Biotech. 21, 83–88.

    Article  CAS  Google Scholar 

  32. SRI (2002) Biotechnology separation processes, PEP 188B, SRI Consulting, Menlo Park, USA.

    Google Scholar 

  33. SRI (1999) 1,3-propanediol and polytrimethylene terephthalate, PEP 227, SRI Consulting, Menlo Park, USA.

    Google Scholar 

  34. Akiyama, M., Tsuge, T., and Doi, Y. (2003) Polymer Degrad. Stab. 80, 183–194.

    Article  CAS  Google Scholar 

  35. Lee, P. C., Lee, W. G., Lee, S. Y., Chang, H. N., and Chang, Y. K. (2000) Biotech. Bioproc. Eng. 5, 379–381.

    CAS  Google Scholar 

  36. Reismann, H. B. (1988) Economic Analysis of Fermentation Processes. CRC Press, FL: p. 94.

    Google Scholar 

  37. Reddy Kunduru, M., and Pometto, A. L. (1996) J. Ind. Microbiol. Biotechnol. 16, 249–256.

    Google Scholar 

  38. Lee, J. H., Pagan, R., and Rogers, P. L. (1983) Biotech. Bioeng. 25, 659–669.

    Article  CAS  Google Scholar 

  39. Wibowo, C., Chang, W.-C., and Ng, K. M. (2001) AIChE J. 47, 2474–2492.

    Article  CAS  Google Scholar 

  40. Fidaleo, M. and Moresi, M. (2005) Biotech. Bioeng. 91, 556–568.

    Article  CAS  Google Scholar 

  41. SRI (2002) Polyhydroxyalkanoates from organic wastes, PEP 2002-8, SRI Consulting, Menlo Park, USA.

    Google Scholar 

  42. Wisniewski, M. and Pierzchalska, M. (2005) J. Chem. Technol. Biotechnol. 80, 1425–1430.

    Article  CAS  Google Scholar 

  43. Lee, K.-R., Teng, M.-Y., Lee, H.-H., and Lai, J.-Y. (2000) J. Membr. Sci. 164, 13–23.

    Article  CAS  Google Scholar 

  44. Simons, P. and Nossin, P. (2005) personal communication.

  45. Alles, C. (2003) personal communication.

  46. Vink, E. T. H. (2005) personal communication.

  47. SRI (1999) Lysine-Sulfate Production By Fermentation with Recovery by Spray Drying, PEP 97-8, SRI Consulting, Menlo Park, USA.

    Google Scholar 

  48. ORPLANA (2005) Sugarcane payment in the Sao Paulo state—in the 2003/04 season http://www.orplana.com.br/estatisticas.asp.

  49. NYBOT (2005) Historical data—Sugar 11, http://www.nybot.com/reports historicalData/indexHistoricalData.htm.

  50. NYBOT (2005) Historical data—Sugar 14, http://www.nybot.com/reports historicalData/indexHistoricalData.htm.

  51. Rupp-Dahlem, C. (2005) personal communication.

  52. SRI (2000) PEP Yearbook International, Vol. 2M—Germany, SRI Consulting, Menlo Park, USA.

    Google Scholar 

  53. Li, S., Tuan, V. A., Falconer, J. L., and Noble, R. D. (2001) J. Membr. Sci. 191, 53–59.

    Article  CAS  Google Scholar 

  54. Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., et al. (2000) Special report on Emission Scenarios (SRES), 599 p, Cambridge University Press, Cambridge.

    Google Scholar 

  55. Ren, T., Patel, M., and Blok, K. (2006) Energy 31, 425–451.

    Article  CAS  Google Scholar 

  56. ArcherDanielsMidland (2006) ADM Names Clinton, Iowa as Location for PHA Plant, http://www.admworld.com/naen/pressroom/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Hermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermann, B.G., Patel, M. Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology. Appl Biochem Biotechnol 136, 361–388 (2007). https://doi.org/10.1007/s12010-007-9031-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-9031-9

Index Entries

Navigation