Skip to main content
Log in

Substrate specificity of Streptomyces transglutaminases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Transglutaminase (TGase) is a multifunctional enzyme vital for many physiologic processes, such as cell differentiation, tissue regeneration, and plant pathogenicity. The acyl transfer function of the enzyme can activate primary amines and, consequently, attach them onto a peptidyl glutamine, a reaction important for various in vivo and in vitro protein crosslinking and modification processes. To understand better the structure-function relationship of the enzyme and to develop it further as an industrial biocatalyst, we studied TGase secreted by several Streptomyces species and Phytophthora cactorum. We purified the enzyme from S. lydicus, S. platensis, S. nigrescens, S. cinnamoneus, and S. hachijoensis. The pH and temperature profiles of S. lydicus, S. platensis, and S. nigrescens TGases were determined. The specificity of S. lydicus TGase toward its acyl-accepting amine substrates was characterized. Correlation of the electronic and steric features of the substrates with their reactivity supported the mechanism previously proposed for Streptomyces mobaraensis TGase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Facchiano, F. and Facchiano, A. (2005), Prog. Exp. Tumor Res. 38, 37–57.

    Article  CAS  Google Scholar 

  2. Yokoyama, K., Nio, N., and Kikuchi, Y. (2004), Appl. Microbiol. Biotechnol. 64, 447–454.

    Article  CAS  Google Scholar 

  3. Lorand, L. and Graham, R. M. (2003), Nat. Rev. Mol. Cell Biol. 4, 140–156.

    Article  CAS  Google Scholar 

  4. Liu, S., Cerione, R. A., and Clardy, J. (2002), Proc. Natl. Acad. Sci. USA 99, 2743–2747.

    Article  CAS  Google Scholar 

  5. Bech, L., Norrevang, I. A., Halkier, T., Rasmussen, G., Schaffer, T., Andersen, J. T. and Schafer, T. (1996), International patent WO9606931-A1.

  6. Bech, L., Rasmussen, G., Halkier, T., Okada, M., Andersen, L. N., and Sandal, T. (2002), US patent US6428933-B1.

  7. Leblanc, A., Gravel, C., Labelle, J., and Keillor, J. W. (2001), Biochemistry 40, 8335–8342.

    Article  CAS  Google Scholar 

  8. Umezawa, Y., Ohtsuka, T., Yokoyama, K., and Nio, N. (2002), Food Sci. Technol. Res. 8, 113–118.

    Article  CAS  Google Scholar 

  9. Kashiwagi, T., Yokoyama, K., Ishikawa, K., Ono, K., Ejima, D., Matsui, H., and Suzuki, E. (2002), J. Biol. Chem. 277, 44,252–44,260.

    CAS  Google Scholar 

  10. Folk, J. E. (1983), Adv. Enzymol. Relat. Areas Mol. Biol. 54, 1–56.

    Article  CAS  Google Scholar 

  11. Lorand, L., Parameswaran, K. N., Stenberg, P., et al. (1979), Biochemistry 18, 1756–1765.

    Article  CAS  Google Scholar 

  12. Ohtsuka, T., Sawa, A., Kawabata, R., Nio, N., and Motoki, M. (2000), J. Agric. Food Chem. 48, 6230–6233.

    Article  CAS  Google Scholar 

  13. Castro, E. A. and Ureta C. (1989) J. Org. Chem. 54, 2153–2159.

    Article  CAS  Google Scholar 

  14. Song, H. B., Choi, M. H., Koo, I. S., Oh, H. K., and Lee, I. (2003), Bull. Korean Chem. Soc. 24, 91–94.

    Article  CAS  Google Scholar 

  15. Hansch, C. H. (1979), Substituent Constants for Correlation Analysis in Chemistry and Biology, John Wiley, New York.

    Google Scholar 

  16. Perrin, D. D. (1981), pK a Prediction for Organic Acids and Bases, Chapman &Hall, New York.

    Google Scholar 

  17. Andou, H., Matsuura, A., and Hirose, H. (1993), US patent 5,252,469-A1.

  18. Pedersen, L. C., Yee, V. C., Bishop, P. D., Le Trong, I., Teller, D. C., and Stenkamp, R. E. (1994), Protein Sci. 3, 1131–1135.

    Article  CAS  Google Scholar 

  19. Nury, S., Meunier, J.-C., and Mouranche, A. (1989), Eur. J. Biochem. 180, 161–166.

    Article  CAS  Google Scholar 

  20. Folk, J. E. and Cole, P. W. (1966), Biochim. Biophys. Acta 122, 244–264.

    CAS  Google Scholar 

  21. Brunner, F., Rosahl, S., Lee, J., et al. (2002), EMBO J. 21, 6681–6688.

    Article  CAS  Google Scholar 

  22. Grosclaude, F., Mahe, M. F., and Ribadeau-Dumas, B. (1973), Eur. J. Biochem. 40, 323, 324.

    Article  CAS  Google Scholar 

  23. Gorman, J. J. and Folk, J. E. (1984), J. Biol. Chem. 259, 9007–9010.

    CAS  Google Scholar 

  24. Kahlem, P., Terré, C., Green, H., and Djian, P. (1996), Proc. Natl. Acad. Sci. USA 93, 14,580–14,585.

    Article  CAS  Google Scholar 

  25. Hu, B. and Messersmith, P. B. (2003), J. Am. Chem. Soc. 125, 14,298, 14,299.

    CAS  Google Scholar 

  26. Griffin, M., Casadio, R., and Bergamini, C. M. (2002), Biochem. J. 368, 377–396.

    Article  CAS  Google Scholar 

  27. Makarova, K. S., Aravind, L., and Koonin, E. V. (1999), Protein Sci. 8, 1714–1719.

    CAS  Google Scholar 

  28. Nielsen, P. M. (1995), Food Biotechnol. 9, 119–156.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langston, J., Blinkovsky, A., Byun, T. et al. Substrate specificity of Streptomyces transglutaminases. Appl Biochem Biotechnol 136, 291–308 (2007). https://doi.org/10.1007/s12010-007-9027-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-9027-5

Index Entries

Navigation