Skip to main content
Log in

Production of L(+)-Lactic Acid Using Acid-Adapted Precultures of Rhizopus arrhizus in a Stirred Tank Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cultivations of filamentous fungi in stirred tank reactors (STRs) to produce metabolites are often limited by insufficient mixing and mass transfer because of the formation of mycelial clumps inside the reactors. This study developed an acid-adapted preculture approach to control the morphology of filamentous Rhizopus arrhizus in a STR, consequently to enhance the production yield and productivity of L(+)-lactic acid efficiently using waste potato starch as substrate. Using the acid-adapted precultures as inoculum, the morphology of R. arrhizus was maintained as large clumps, coalesced loose small pellets, and freely dispersed small pellets. The highest lactic acid concentration of 85.7 g/L with a yield of 86% was obtained in association with the formation of coalesced loose small pellets. The results indicate that the use of the acid-adapted precultures as inoculum is a promising approach for lactic acid production in STRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, Z. Y., Jin, B., & Kelly, J. M. (2007). Biochem. Eng. J., 35, 251–263.

    Article  CAS  Google Scholar 

  2. Datta, R., & Henry, M. (2006). J. Chem. Technol. Biotechnol., 81, 1119–1129.

    Article  CAS  Google Scholar 

  3. Expert Committee on Food Additives (1967). WHO Food Additives Series, 29, 144–148.

    Google Scholar 

  4. Huang, L. P., Jin, B., Lant, P., & Zhou, J. (2003). J. Chem Technol. Biotechnol., 78, 899–906.

    Article  CAS  Google Scholar 

  5. Yu, R. C., & Hang, Y. D. (1989). Biotechnol. Lett., 11, 597–600.

    Article  CAS  Google Scholar 

  6. Zhang, Z. Y., Jin, B., & Kelly, J. M. (2007). World J. Microbiol. Biotechnol., 23, 229–236.

    Article  CAS  Google Scholar 

  7. Chopin, A. (1993). FEMS Microbiol. Rev., 12, 21–38.

    Article  CAS  Google Scholar 

  8. Ganguly, R., Dwivedi, P., & Singh, R. P. (2007). Biores. Technol., 98, 1264–1251.

    Google Scholar 

  9. Dong, X. Y., Bai, S., & Sun, Y. (1996). Biotechnol. Lett., 18, 225–228.

    Article  CAS  Google Scholar 

  10. Hang, Y. D., Hamamci, H., & Woodams, E. E. (1989). Biotechnol. Lett., 11, 119–120.

    Article  CAS  Google Scholar 

  11. Hamamci, H., & Ryu, D. D. Y. (1994). Appl. Biochem. Biotechnol., 44, 125–133.

    Article  CAS  Google Scholar 

  12. Lin, J. P., Ruan, S. D., & Cen, P. L. (1998). Chem. Eng. Commun., 168, 59–79.

    Article  CAS  Google Scholar 

  13. Tamada, M., Begum, A. A., & Sadi, S. (1992). J. Ferment. Bioeng., 74, 379–383.

    Article  CAS  Google Scholar 

  14. Xuemei, L., Jianping, L., Mo’e, L., & Peilin, C. (1999). Bioprocess. Eng., 20, 231–237.

    CAS  Google Scholar 

  15. Efremenko, E. N., Spiricheva, O. V., Veremeenko, D. V., Baibak, A. V., & Lozinsky, V. I. (2006). J. Chem. Technol. Biotechnol., 81, 519–522.

    Article  CAS  Google Scholar 

  16. Kosakai, Y., Park, Y. S., & Okabe, M. (1997). Biotechnol. Bioeng., 55, 461–470.

    Article  CAS  Google Scholar 

  17. Park, E. Y., Kosakai, Y., & Okabe, M. (1998). Biotechnol. Prog., 14, 699–704.

    Article  CAS  Google Scholar 

  18. Tay, A., & Yang, S. T. (2002). Biotechnol. Bioeng., 80, 1–12.

    Article  CAS  Google Scholar 

  19. Schugerl, K., Whittler, R., & Lorentz, T. (1983). Trends Biotechnol., 1, 120–127.

    Article  Google Scholar 

  20. Miura, S., Arimura, T., Hoshino, M., Kojima, M., Dwiarti, L., & Okabe, M. (2003). J. Biosci. Bioeng., 96, 65–69.

    CAS  Google Scholar 

  21. Yin, P. M., Nishina, N., Kosakai, Y., Yahiro, K., Park, Y., & Okabe, M. (1997). J. Ferment. Bioeng., 84, 249–253.

    Article  CAS  Google Scholar 

  22. Yang, W. C., Zhong, J. L., & Tsao, G. T. (1995). Appl. Biochem. Biotechnol., 51–52, 57–71.

    Google Scholar 

  23. Bai, D. M., Jia, M. Z., Zhao, X. M., Ban, R., Shen, F., Li, X. G., et al. (2003). Chem. Eng. Sci., 58, 785–791.

    Article  CAS  Google Scholar 

  24. Jin, B., Huang, L. P., & Lant, P. (2003). Biotechnol. Lett., 25, 1983–1987.

    Article  CAS  Google Scholar 

  25. Marták, J., Schlosser, S., Sabolová, E., Krištofíková, L., & Rosenberg, M. (2003). Process Biochem., 38, 1573–1583.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge funding from the Australian Research Council (Discovery Grant DP0452516).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.Y., Jin, B. & Kelly, J.M. Production of L(+)-Lactic Acid Using Acid-Adapted Precultures of Rhizopus arrhizus in a Stirred Tank Reactor. Appl Biochem Biotechnol 149, 265–276 (2008). https://doi.org/10.1007/s12010-007-8126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8126-7

Keywords

Navigation