Advertisement

Applied Biochemistry and Biotechnology

, Volume 149, Issue 1, pp 9–22 | Cite as

Spectroscopic Characterization of Thiazole Orange-3 DNA Interaction

  • J. GhasemiEmail author
  • Sh. Ahmadi
  • A. I. Ahmad
  • S. Ghobadi
Article

Abstract

The interaction of a new derivative of thiazole orange (TO-3) with calf thymus DNA (ctDNA) has been investigated by fluorescence and absorption spectroscopy. When TO-3 binds to ctDNA, absorption bands exhibit significant hypochromicity at low base pair/dye ratio (BP/D ratio), and high BP/D show hyperchromicity with red shift. The spectral changes are attributed to the different species formed between TO-3 and ctDNA in the titration course of the dye molecule with DNA. Multivariate curve resolutions–alternating least squares (MCR–ALS) is applied to the absorption measurements recorded to recover the concentration profiles and the pure spectra of the DNA/TO-3 complexes involved in the process. The binding constant and size of the binding site have been determined spectrophotometrically using the McGhee von Hippel equation. MCR–ALS has been used to reveal the precise concentration profiles of all detectable species formed between ctDNA and TO-3 and their pure spectral profiles.

Keywords

ctDNA TO-3 Fluorescence Absorption spectra MCR–ALS 

References

  1. 1.
    Williams, C. H. G. (1856). Transactions of the Royal Society of Edinburgh, 21, 377.Google Scholar
  2. 2.
    Armitage, B. A. (2005). Topics in Current Chemistry, 253, 55.Google Scholar
  3. 3.
    Mishra, A., Behera, R. K., Behera, P. K., Mishra, B. K., & Behera, G. B. (2000). Chemistry Reviews, 100, 1973.CrossRefGoogle Scholar
  4. 4.
    Lanzafame, J. M., Muenter, A. A., & Brumbaugh, D. V. (1996). Chemical Physics, 210, 79.CrossRefGoogle Scholar
  5. 5.
    Spitler, M. T., Ehret, A., Kietzmann, R., & Willing, F. (1997). Journal of Physical Chemistry B, 101, 2552.CrossRefGoogle Scholar
  6. 6.
    Saito, K., & Yokoyama, H. (1994). Thin Solid Films, 243, 526.CrossRefGoogle Scholar
  7. 7.
    Kawakami, M., Koya, K., Ukai, T., Tatsuta, N., Ikegawa, A., Ogawa, K., et al. (1998). Journal of Medicinal Chemistry, 41, 130.CrossRefGoogle Scholar
  8. 8.
    Skripchenko, A., Wagner, S. J., Thompson-Montgomery, D., & Awatefe, H. (2006). Transfusion, 46, 213.CrossRefGoogle Scholar
  9. 9.
    Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A., et al. (1992). Nucleic Acids Research, 20, 2803.CrossRefGoogle Scholar
  10. 10.
    Deligeorgiev, T. G. (1998). In S. Daehne, U. Resch-Genger, & O. S. Wolfbeis (Eds.) Near-infrared dyes for high technology applications, NATO ASI series p. 125. Dordrecht: Kluwer.Google Scholar
  11. 11.
    Hossain, M. Z., Ernst, L. A., & Nagy, J. I. (1995). Neuroscience Letters, 184, 71.CrossRefGoogle Scholar
  12. 12.
    Norman, D. G., Grainger, R. J., Uhrin, D., & Lilley, D. M. (2000). Biochemistry, 39, 6317.CrossRefGoogle Scholar
  13. 13.
    Goodwin, P. M., Johnson, M. E., Martin, J. C., Ambrose, W. P., Marrone, B. L., Jett, J. H., et al. (1993). Nucleic Acids Research, 21, 803.CrossRefGoogle Scholar
  14. 14.
    Guerrieri, S., Johnson, I. D., Bustamante, C., & Wells, K. S. (1997). Analytical Biochemistry, 249, 44.CrossRefGoogle Scholar
  15. 15.
    Netzel, T. L., Nafisi, K., Zhao, M., Lenhard, J. R., & Johnson, I. (1995). Journal of Physical Chemistry, 99, 17936.CrossRefGoogle Scholar
  16. 16.
    Larsson, A., Carlsson, C., & Jonsson, M. (1995). Biopolymers, 36, 153.CrossRefGoogle Scholar
  17. 17.
    Jarikote, D. V., Krebs, N., Tannert, S., Roeder, B., & Seitz, O. (2006). Chemistry–A European Journal, 13, 300.CrossRefGoogle Scholar
  18. 18.
    Karunakaran, V., Perez Lustres, J. L., Zhao, L., Ernsting, N. P., & Seitz, O. (2006). Journal of the American Chemical Society, 128, 2954.CrossRefGoogle Scholar
  19. 19.
    Karlsson, H. J., Mattias, H., Bergqvist, P. L., & Westman, G. (2004). Bioorganic and Medicinal Chemistry, 12, 2369.CrossRefGoogle Scholar
  20. 20.
    Kapuscinski, J., & Skoczylas, B. (1978). Nucleic Acids Research, 5, 3775.CrossRefGoogle Scholar
  21. 21.
    Jorgenson, K. F., Varshney, U., & van de Sande, J. H. (1988). Journal of Biomolecular Structure and Dynamics, 5, 1005.Google Scholar
  22. 22.
    Karlsson, H. J., Eriksson, M., Perzon, E., Akerman, B., Lincoln, P., & Westman, G. (2003). Nucleic Acids Research, 31, 6227.CrossRefGoogle Scholar
  23. 23.
    Karlsson, H. J., Lincoln, P., & Westman, G. (2003). Bioorganic and Medicinal Chemistry, 11, 1035.CrossRefGoogle Scholar
  24. 24.
    Blackburn, G. M., & Gait, M. J. (Eds.) (1990). Nucleic acids in chemistry and biology. New York: IRL Press at Oxford University Press.Google Scholar
  25. 25.
    Spielmann, H., Wemmer, D., & Jacobsen, J. (1995). Biochemistry, 34, 8542.CrossRefGoogle Scholar
  26. 26.
    Norden, B., & Tjerneld, F. (1977). Biophysical Chemistry, 6, 31.CrossRefGoogle Scholar
  27. 27.
    Kumar, C., Turner, R., & Asuncion, E. (1993). Journal of Photochemistry and Photobiology A, Chemistry, 74, 231.CrossRefGoogle Scholar
  28. 28.
    Biver, T., De Biasi, A., Secco, F., Venturini, M., & Yarmoluk, S. (2005). Biophysical Journal, 89, 374.CrossRefGoogle Scholar
  29. 29.
    Biver, T., Ciatto, C., Secco, F., & Venturini, M. (2006). Archives of Biochemistry and Biophysics, 452, 93.CrossRefGoogle Scholar
  30. 30.
    Zimmermann, H. W. (1986). Angewandte Chemie & Angewandte Chemie International Edition in English, 25, 115.CrossRefGoogle Scholar
  31. 31.
    West, W., & Sandra, P. (1965). Journal of Physical Chemistry, 69(6), 1894.CrossRefGoogle Scholar
  32. 32.
    Kasha, M. (1963). Radiation Research, 20, 55.CrossRefGoogle Scholar
  33. 33.
    Herz, A. H. (1974). Photographic Science and Engineering, 18(3), 323.Google Scholar
  34. 34.
    Jockusch, S., Turro, N. J., & Tomalia, D. A. (1995). Macromolecules, 28, 7416.CrossRefGoogle Scholar
  35. 35.
    Bradley, D. F., & Wolf, M. K. (1959). Proceedings of the National Academy of Sciences of the United States of America, 45, 944.CrossRefGoogle Scholar
  36. 36.
    Ogul’chansky, T. Yu., Yarmoluk, S. M., Yashchuk, V. M., & Losytskyy, M. Yu. (1999). In J. Greve, G. J. Puppels, & C. Otto (Eds.) Spectroscopy of biological molecules: New directions p. 309. Dordrecht: Kluwer.Google Scholar
  37. 37.
    Ogul’chansky, T. Yu., Losytskyy, M. Yu., Kovalska, V. B., Lukashov, S. S., Yashchuk, V. M., & Yarmoluk, S. M. (2001). Spectrochimica Acta Part A, 57, 2705.CrossRefGoogle Scholar
  38. 38.
    Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A., et al. (1992). Nucleic Acids Research, 20, 2803.CrossRefGoogle Scholar
  39. 39.
    Benson, S. C., Mathies, R. A., & Glazer, A. N. (1993). Nucleic Acids Research, 21, 5727.CrossRefGoogle Scholar
  40. 40.
    Benson, S. C., Singh, P. S., & Glazer, A. N. (1993). Nucleic Acids Research, 21, 5720.CrossRefGoogle Scholar
  41. 41.
    Smilde, A. K., Tauler, R., Henshaw, J. M., Burgess, L. W., & Kowalski, B. R. (1994). Analytical Chemistry, 66, 3345.CrossRefGoogle Scholar
  42. 42.
    Tauler, R. (1995). Chemometrics and Intelligent Laboratory Systems, 30, 133.CrossRefGoogle Scholar
  43. 43.
    de Juan, A., Casassas, E., & Tauler, R (2000). Soft modeling of analytical data. In R. A. Meyers (Ed.) Encyclopedia of Analytical Chemistry: Instrumentation and Applications (p. 9800). New York: Wiley.Google Scholar
  44. 44.
    de Juan, A., & Tauler, R. (2003). Analytica Chimica Acta, 500, 195.CrossRefGoogle Scholar
  45. 45.
    Navea, S., de Juan, A., & Tauler, R. (2001). Analytica Chimica Acta, 446, 185.CrossRefGoogle Scholar
  46. 46.
    Borges, A., Tauler, R., & de Juan, A. (2005). Analytica Chimica Acta, 544, 159.CrossRefGoogle Scholar
  47. 47.
    Isacsson, J., & Westman, G. (2001). Tetrahedron Letters, 42, 3207.CrossRefGoogle Scholar
  48. 48.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning. A laboratory manual. New York: Cold Spring Harbour Press.Google Scholar
  49. 49.
    Aktipis, S., & Kindelis, A. (1973). Biochemistry, 12, 1213.CrossRefGoogle Scholar
  50. 50.
    Aaij, C., & Borst, P. (1972). Biochimica et Biophysica Acta, 269, 192.Google Scholar
  51. 51.
    Jaumota, J., Gargalloa, R., de Juana, A., & Tauler, R. (2005). Chemometrics and Intelligent Laboratory Systems, 76, 101.CrossRefGoogle Scholar
  52. 52.
    Ghasemi, J., Niazi, A., Westman, G., & Kubista, M. (2004). Talanta, 62, 835.CrossRefGoogle Scholar
  53. 53.
    Kubista, M., Sjoback, R., & Nygren, J. (1995). Analytica Chimica Acta, 302, 121.CrossRefGoogle Scholar
  54. 54.
    Fisher, R., & MacKenzie, W. (1923). Journal of Agricultural Sciences, 13, 311.CrossRefGoogle Scholar
  55. 55.
    Navea, S., de Juan, A., & Tauler, R. (2003). Analytical Chemistry, 75, 5592.CrossRefGoogle Scholar
  56. 56.
    Golub, G. H., & Van Loan, C. F (1989). Matrix Computations (2nd ed.). Baltimore: John Hopkins University Press.Google Scholar
  57. 57.
    Maeder, M. (1987). Analytical Chemistry, 59, 527.CrossRefGoogle Scholar
  58. 58.
    Maeder, M., & Zuberbühler, A. D. (1986). Analytica Chimica Acta, 181, 287.CrossRefGoogle Scholar
  59. 59.
    Windig, W., & Guilment, J. (1991). Analytical Chemistry, 63, 1425.CrossRefGoogle Scholar
  60. 60.
    Sanchez, F. C., Toft, J., van den Bogaert, B., & Massart, D. L. (1996). Analytical Chemistry, 68, 79.CrossRefGoogle Scholar
  61. 61.
    de Juan, A., Navea, S., Diewok, J., & Tauler, R. (2004). Chemometrics and Intelligent Laboratory Systems, 70, 11.CrossRefGoogle Scholar
  62. 62.
    McGhee, J. D., & Von Hippel, P. H. (1974). Journal of Molecular Biology, 86, 469.CrossRefGoogle Scholar
  63. 63.
    Carlsson, C., Larsson, A., Jonsson, M., Albinsson, B., & Norden, B. (1994). Journal of Physical Chemistry, 98, 10313.CrossRefGoogle Scholar
  64. 64.
    Hilal, H., & Taylor, J. A. (2007). Dyes and Pigments, 75, 483.CrossRefGoogle Scholar
  65. 65.
    Kolesnikova, D. V., Zhuze, A. L., & Zasedatelev, A. S. (1998). DNKSpecifichnye Nizkomolekulyarnye Soedineniya. Moskow: MFTI In Russian.Google Scholar
  66. 66.
    Nygren, J., Svanvik, N., & Kubista, M. (1998). Biopolymers, 46, 39.CrossRefGoogle Scholar
  67. 67.
    Biver, T., Boggioni, A., Secco, F., Turriani, E., Venturini, M., & Yarmoluk, S. (2007). Archives of Biochemistry and Biophysics, 465, 90.CrossRefGoogle Scholar
  68. 68.
    Yarmoluk, S. M., Lukashov, S. S., Losytskyy, M. Yu., Akerman, B., & Kornyushyna, O. S. (2002). Spectrochimica Acta Part A, 58, 3223.CrossRefGoogle Scholar
  69. 69.
    Milanovich, N., Suh, M., Jankowiak, R., Small, G. J., & Hayes, J. M. (1996). Journal of Physical Chemistry, 100, 9181.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • J. Ghasemi
    • 1
    Email author
  • Sh. Ahmadi
    • 1
  • A. I. Ahmad
    • 2
  • S. Ghobadi
    • 3
  1. 1.Department of ChemistryRazi UniversityKermanshahIran
  2. 2.Department of Chemical and Biological EngineeringChalmers University of TechnologyGothenburgSweden
  3. 3.Department of BiologyRazi UniversityKermanshahIran

Personalised recommendations