Applied Biochemistry and Biotechnology

, Volume 149, Issue 1, pp 1–8 | Cite as

Degradation of Polycyclic Aromatic Hydrocarbons by Rigidoporus lignosus and its Laccase in the Presence of Redox Mediators

  • M. T. Cambria
  • Z. Minniti
  • V. Librando
  • A. CambriaEmail author


The metabolism of polycyclic aromatic hydrocarbons (PAHs) was studied in vivo and in vitro in systems consisting of Rigidoporus lignosus and its laccase, in the presence of so-called “mediator” compounds. The static culture of the native fungal strain was able to metabolize anthracene and 2-methylanthracene, but not 9-nitroanthracene. The addition of redox mediators 2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1-hydroxybenzotriazole (HBT) or violuric acid (VA) led to a significant increase in the degradation of substrates. The oxidation of PAHs was not significant when purified laccase was used without the addition of mediators. The addition of these compounds increased the oxidation of all substrates by approximately 70–80% after 72 h of incubation. The degradation rate was highest for 2-methylanthracene in the presence of VA.


Rigidoporus lignosus Laccase Polycyclic aromatic hydrocarbons Degradation Redox potential Mediators 



This work was supported in part by a grant from the Regione Siciliana, in the framework of Project 1999/IT.16.1.PO.011/3.13/7.2.4/339 Prot.238 “Formazione per la ricerca nel campo della bonifica dei siti contaminati” and from the Istituto Nazionale Biostrutture e Biosistemi.

We would like to thank M. D. Wilkinson for his revision of the English version of the paper.


  1. 1.
    Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351–368.CrossRefGoogle Scholar
  2. 2.
    Schutzendubel, A., Majcherczyk, A., Johannes, C., & Huttermann, A. (1999). Degradation of fluorene, anthracene, phenanthrene and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta. International Biodeterioration & Biodegradation, 43, 93–100.CrossRefGoogle Scholar
  3. 3.
    Kotterman, M. J. J., Rietberg, H. J., Hage, A., & Field, J. A. (1998). Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants. Biotechnology and Bioengineering, 57, 220–227.CrossRefGoogle Scholar
  4. 4.
    Tiehm, A., Streber, M., Werner, P., & Frimmel, F. (1997). Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environmental Science & Technology, 31, 2570–2576.CrossRefGoogle Scholar
  5. 5.
    Levin, L., Viale, A., & Forchiassin, A. (2003). Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. International Biodeterioration & Biodegradation, 52, 1–5.CrossRefGoogle Scholar
  6. 6.
    Means, J. C., Wood, S. G., Hassett, J. J., & Banwart, W. L. (1980). Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environmental Science & Technology, 14, 1525–1528.CrossRefGoogle Scholar
  7. 7.
    Weissenfels, W. D., Klever, H. J., & Langhoff, J. (1992). Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Applied Microbiology and Biotechnology, 36, 689–696.CrossRefGoogle Scholar
  8. 8.
    Kanaly, R., & Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology, 182, 2059–2067.CrossRefGoogle Scholar
  9. 9.
    Kang, H. Y. (2002). Cellular responses of Pseudomonas sp. KK1 to two-ring polycyclic aromatic hydrocarbon, naphthalene. Journal of Microbiology, 40, 38–42.Google Scholar
  10. 10.
    Stahl, J. D., & Aust, S. D. (1995). Biodegradation of 2,4,6 trinitrotoluene by the white rot fungus Phanerochaete chrysosporium. In J. Spain (Ed.) Biodegradation of nitroaromatic compounds pp. 117–133. N.Y.: Plenum Press.Google Scholar
  11. 11.
    Lestan, D., & Lamar, R. T. (1996). Development of fungal inocula for bioaugmentation of contaminated soils. Applied and Environmental Microbiology, 62, 2045–2052.Google Scholar
  12. 12.
    Song, H. G. (1997). Biodegradation of aromatic hydrocarbons by several white-rot fungi. Journal of Microbiology, 35, 66–71.Google Scholar
  13. 13.
    Rodriguez, E., Nuero, F., Guillén, F., Martinez, A. T., & Martinez, M. J. (2004). Degradation of phenolic and non- phenolic aromatic pollutants by four Pleurotus species: the role of laccase and versatile peroxidase. Soil Biology & Biochemistry, 36, 909–916.CrossRefGoogle Scholar
  14. 14.
    Han, M. J., Choi, H. T., & Song, H. G. (2004). Degradation of phenanthrene by Trametes versicolor and its laccase. Journal of Microbiology, 42, 94–98.Google Scholar
  15. 15.
    Messerschmidt, A. (1997). Multi-copper oxidases. Singapore: World Scientific.Google Scholar
  16. 16.
    Johannes, C., Majcherczyk, A., & Huttermann, A. (1996). Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Applied Microbiology and Biotechnology, 46, 313–317.CrossRefGoogle Scholar
  17. 17.
    Majcherczyk, A., Johannes, C., & Huttermann, A. (1998). Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microbiology Biotechnology, 22, 335–341.CrossRefGoogle Scholar
  18. 18.
    Bourbonnais, R., Pace, M. G., Reid, I. D., Lanthier, P., & Yaguchi, M. (1995). Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Applied and Environmental Microbiology, 61, 1876–1880.Google Scholar
  19. 19.
    Xu, F., Kulys, J. J., Duke, K., Li, K., Krikstopaitis, K., Deussen, H. W., et al. (2000). Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Applied and Environmental Microbiology, 66, 2052–2056.CrossRefGoogle Scholar
  20. 20.
    Xu, F., Deussen, H. W., Lopez, B., Lam, L., & Li, K. (2001). Enzymatic and electrochemical oxidation of N-hydroxy compounds: Redox potential, electron-transfer kinetics, and radical stability. European Journal of Biochemistry, 268, 4169–4176.CrossRefGoogle Scholar
  21. 21.
    Cambria, M. T., Cambria, A., Ragusa, S., & Rizzarelli, E. (2000). Production, purification and properties of an extracellular laccase from Rigidoporus lignosus. Protein Expression and Purification, 18, 141–147.CrossRefGoogle Scholar
  22. 22.
    Garavaglia, S., Cambria, M. T., Miglio, M., Ragusa, S., Iacobazzi, V., Palmieri, F., et al. (2004). The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. Journal of Molecular Biology, 342, 1519–1531.CrossRefGoogle Scholar
  23. 23.
    Alcade, M., Bulter, T., & Arnold, F. H. (2002). Colorimetric assays for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases. Journal of Biomolecular Screening, 7, 547–553.CrossRefGoogle Scholar
  24. 24.
    Bumpus, J. A. (1989). Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 55, 154–158.Google Scholar
  25. 25.
    Cerniglia, C. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. Journal of Industrial Microbiology & Biotechnology, 19, 324–333.CrossRefGoogle Scholar
  26. 26.
    Pickard, M. A., Roman, R., Tinoco, R., & Vasquez-Duhalt, R. (1999). Polycyclic aromatic hydrocarbon metabolism by white-rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Applied and Environmental Microbiology, 65, 3805–3809.Google Scholar
  27. 27.
    Gutierrez, A. L., Caramelo, A. L., Prieto, M. J., & Martinez, A. T. (1994). Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. Applied and Environmental Microbiology, 60, 1783–1788.Google Scholar
  28. 28.
    Levin, R. D., & Lias, S. G. (1982). Ionization potential and appearance potential measurements. U.S. National Standard Reference, Data Series No 71, U.S. Bureau.Google Scholar
  29. 29.
    Steenken, S., & Neta, P. (1982). One-electron redox potentials of phenols, hydroxphenols and aminophenols and related compound of biological interest. Journal of Physical Chemistry, 86, 3661–3667.CrossRefGoogle Scholar
  30. 30.
    Muñoz, C., Guillén, F., Martinez, A. T., & Martinez, M. J. (1997). Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Current Microbiology, 34, 1–5.CrossRefGoogle Scholar
  31. 31.
    Xu, F. (1996). Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry, 35, 7608–7614.CrossRefGoogle Scholar
  32. 32.
    Christensson, A., Dimeheva, N., Ferapontova, E., Gorton, L., Ruzgas, T., Stoica, L., et al. (2004). Direct electron transfer between ligninolytic redox enzymes and electrodes. Electroanalysis, 6, 1074–1092.CrossRefGoogle Scholar
  33. 33.
    Shleev, S. V., Morozova, O. V., Nikitina, O. V., Gorshina, E. S., Rusinova, T. V., Serezhenkof, V. A., et al. (2004). Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie, 86, 693–703.CrossRefGoogle Scholar
  34. 34.
    Bonomo, R. P., Boudet, A. M., Cozzolino, R., Rizzarelli, E., Santoro, A. M., Sterjiades, R., et al. (1998). A comparative study of two isoforms of laccase secreted by the “white-rot” fungus Rigidoporus lignosus, exhibiting significant structural and functional differences. Journal of Inorganic Biochemistry, 71, 205–211.CrossRefGoogle Scholar
  35. 35.
    Banci, L., Ciofi-Baffoni, S., & Tien, M. (1999). Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry, 38, 3205–3210.CrossRefGoogle Scholar
  36. 36.
    Scott, S. L., Chen, W. J., Bakac, A., & Espenson, J. H. (1993). Spectroscopic parameters electrode potentials, acid ionization constants, and electron exchange rates of the 2,2′-azinobis(3- ethylbenzothiazolone-6-sulfonate) radicals and ions. Journal of Physical Chemistry, 97, 6710–6714.CrossRefGoogle Scholar
  37. 37.
    Piontek, K., Antorini, M., & Choinoswski, T. (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. Journal of Biological Chemistry, 277, 37663–37669.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • M. T. Cambria
    • 1
    • 2
  • Z. Minniti
    • 1
  • V. Librando
    • 1
  • A. Cambria
    • 2
    Email author
  1. 1.Department of Chemical SciencesUniversity of CataniaCataniaItaly
  2. 2.National Institute of Biostructures and BiosystemsUniversity of CataniaCataniaItaly

Personalised recommendations