Skip to main content
Log in

Immobilization of Yarrowia lipolytica Lipase—a Comparison of Stability of Physical Adsorption and Covalent Attachment Techniques

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lipase immobilization offers unique advantages in terms of better process control, enhanced stability, predictable decay rates and improved economics. This work evaluated the immobilization of a highly active Yarrowia lipolytica lipase (YLL) by physical adsorption and covalent attachment. The enzyme was adsorbed on octyl–agarose and octadecyl–sepabeads supports by hydrophobic adsorption at low ionic strength and on MANAE–agarose support by ionic adsorption. CNBr–agarose was used as support for the covalent attachment immobilization. Immobilization yields of 71, 90 and 97% were obtained when Y. lipolytica lipase was immobilized into octyl–agarose, octadecyl–sepabeads and MANAE–agarose, respectively. However, the activity retention was lower (34% for octyl–agarose, 50% for octadecyl–sepabeads and 61% for MANAE–agarose), indicating that the immobilized lipase lost activity during immobilization procedures. Furthermore, immobilization by covalent attachment led to complete enzyme inactivation. Thermal deactivation was studied at a temperature range from 25 to 45°C and pH varying from 5.0 to 9.0 and revealed that the hydrophobic adsorption on octadecyl–sepabeads produced an appreciable stabilization of the biocatalyst. The octadecyl–sepabeads biocatalyst was almost tenfold more stable than free lipase, and its thermal deactivation profile was also modified. On the other hand, the Y. lipolytica lipase immobilized on octyl–agarose and MANAE–agarose supports presented low stability, even less than the free enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cammarota, M. C., & Freire, D. M. G. (2006). Bioresource Technology, 97, 2195–2210.

    Article  CAS  Google Scholar 

  2. Gotor-Fenandez, V., Brieva, R., & Gotor, V. (2006). Journal Molecular Catalysis B: Enzymatic, 40, 111–120.

    Article  CAS  Google Scholar 

  3. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisán, J. M., & Fernandez-Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  4. Koeller, K. M., & Wong, C.-H. (2001). Nature, 409, 232–240.

    Article  CAS  Google Scholar 

  5. Bevilaqua, J. B., Lima, L. M., Cunha, A. G., Barreiro, E. J., Alves, T. L. M., & Paiva, L. M. C., et al. (2005). Applied Biochemistry and Biotechnology, 121, 117–128.

    Article  Google Scholar 

  6. Shibatane, T., Omori, K., Akatsuka, H., Kawai, E., & Matsumae, H. (2000). Journal of Molecular Catalysis B: Enzymatic, 10, 141–149.

    Article  Google Scholar 

  7. Mosbach, K. (1971). Science American, 224, 26–32.

    Article  CAS  Google Scholar 

  8. Palomo, J. M., Segura, R. L., Fernandez-Lorente, G., Guisán, J. M., & Fernandez-Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 704–707.

    Article  CAS  Google Scholar 

  9. Villeneuve, P., Muderhwa, J. M., Graille, J., & Haas, M. J. (2000). Journal of Molecular Catalysis B: enzymatic, 9, 113–148.

    Article  CAS  Google Scholar 

  10. Gupta, M. N. (1991). Biotechnology Applied Biochemistry, 14, 1–11.

    Google Scholar 

  11. Klibanov, A. M. (1982). Advanced Applied Microbiology, 29, 1–28.

    Article  Google Scholar 

  12. Klibanov, A. M. (1983). Biochemical Society Transactions, 11, 19–20.

    CAS  Google Scholar 

  13. Mozhaev, V. V., Melik-Nubarov, N. S., Sergeeva, M. V., Sikrnis, V., & Martinek, K. (1990). Biocatalysis, 3, 179–87.

    Article  CAS  Google Scholar 

  14. Nanalov, R. J., Kamboure, M. S., & Emanuiloda, E. I. (1993). Biotechnology Applied Biochemistry, 18, 409–416.

    Google Scholar 

  15. Jaeger, K. E., Dijkstra, B. W., & Reetz, M. T. (1999). Annual Review of Microbiology, 53, 315–351.

    Article  CAS  Google Scholar 

  16. Aloulou, A., Rodriguez, J. A., Fernandez, S., Osterhout, D., Puccinelli, D., & Carriere, F. (2006). Biochimica et Biophisica Acta, 1761, 995–1013.

    CAS  Google Scholar 

  17. Fernandez-Lafuente, R., Armisén, P., Sabuquillo, P., Fernández-Lorente, G., & Guisán, J. M. (1998). Chemistry and Physics of Lipids, 93, 185–197.

    Article  CAS  Google Scholar 

  18. Palomo, J. M., Muñoz, G., Fernández-Lorente, G., Mateo, C., Fernández-Lafuente, R., & Guisán, J. M. (2002). Journal of Molecular Catalysis B: Enzymatic, 19, 279–286.

    Article  Google Scholar 

  19. Lowry, O., Rosenbrough, M., Farr, A., & Randall, R. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  20. Destain, J., Roblain, D., & Thonart, P. (1997). Biotechnology Letters, 19, 105–107.

    Article  CAS  Google Scholar 

  21. Cabrera, Z., Palomo, J. M., Fernandez-Lorente, G., Fernandez-Lafuente, R., & Guisan, J. M. (2007). Enzyme and Microbial Technology, 40, 1280–1285.

    Article  CAS  Google Scholar 

  22. Fernandez-Lafuente, R., Rosell, C. M., Rodriguez, V., Santana, C., Soler, G., & Batisda, A., et al. (1993). Enzyme and Microbial Technology, 15, 546–550.

    Article  CAS  Google Scholar 

  23. Petkar, M., Lali, A., Caimi, P., & Daminati, M. (2006). Journal of Molecular Catalysis B: enzymatic, 9, 83–90.

    Article  CAS  Google Scholar 

  24. Palomo, J. M., Segura, R. L., Fernandez-Lorente, G., Pernas, M., Rua, M. L., & Guisán, J. M., et al. (2004). Biotechnology Progress, 20, 630–635.

    Article  CAS  Google Scholar 

  25. Oliveira, D., Feihrmann, A. C., Dariva, C., Cunha, A. G., Bevilaqua, J. V., & Destain, J., et al. (2006). Journal of Molecular Catalysis B: Enzymatic, 39, 117–123.

    Article  CAS  Google Scholar 

  26. Lipase Engineering Database is available as http://www.led.uni-stuttgardt.de/.

  27. Wilson, L., Palomo, J. M., Fernández-Lorente, G., Illanes, A., Guisan, J. M., & Fernandez-Lafuente, R. (2006). Enzyme and Microbial Technology, 38, 975–980.

    Article  CAS  Google Scholar 

  28. Palomo, J. M., Fuentes, M., Fernández-Lorente, G., Mateo, C., Guisán, J. M., & Fernández-Lafuente, R. (2003). Biomacromolecules, 4, 1–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was gratefully received from PETROBRÁS, FUJB, FAPERJ and CAPES. The authors are also grateful to Prof Rodrigo Volcan Almeida for his contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise M. G. Freire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha, A.G., Fernández-Lorente, G., Bevilaqua, J.V. et al. Immobilization of Yarrowia lipolytica Lipase—a Comparison of Stability of Physical Adsorption and Covalent Attachment Techniques. Appl Biochem Biotechnol 146, 49–56 (2008). https://doi.org/10.1007/s12010-007-8073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8073-3

Keywords

Navigation