Skip to main content
Log in

Immobilization of Candida antarctica Lipase B by Adsorption to Green Coconut Fiber

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 °C, as half-lives (t 1/2) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hlady, V., & Buijs, J. (1996). Current Opinion in Structural Biology, 7, 72–77.

    CAS  Google Scholar 

  2. Kennedy, J. F., White, C. A., & Melo, E. H. M. (1988). Chimica Oggi, 5, 21–29.

    Google Scholar 

  3. Villeneuve, P., Muderhwa, J. M., Graille, J., & Haas, M. J. (2000). Journal of Molecular Catalysis B, Enzymatic, 9, 113–148.

    Article  CAS  Google Scholar 

  4. Al-Duri, B., & Yong, Y. P. (2000). Biochemical Engineering Journal, 4, 207–215.

    Article  CAS  Google Scholar 

  5. Koops, B. C., Papadimou, E., Verheij, H. M., Slotboom, A. J., & Egmond, M. R. (1999). Applied Microbiology and Biotechnology, 52, 791–796.

    Article  CAS  Google Scholar 

  6. Gitlesen, T., Bauer, M., & Adlercreutz, P. (1997). Biochimica Et Biophysica Acta, 1345, 188–196.

    CAS  Google Scholar 

  7. Panzavolta, F., Soro, S., D’Amato, R., Palocci, C., Cernia, E., & Russo, M. V. (2005). Journal of Molecular Catalysis B, Enzymatic, 32, 67–76.

    Article  CAS  Google Scholar 

  8. Geluk, M. A., Norde, W., Van Kalsbeek, H. K. A., & Van’t Riet, K. (1992). Enzyme and Microbial Technology, 14, 748–754.

    Article  CAS  Google Scholar 

  9. Blanco, R. M., Terreros, P., Pérez, M. F., Otero, C., & González, G. (2004). Journal of Molecular Catalysis B, Enzymatic, 30, 83–93.

    Article  CAS  Google Scholar 

  10. Arroyo, M., Sánchez-Montero, J. M., & Sinisterra, J. V. (1999). Enzyme Microbial Technology, 24, 3–12.

    Article  CAS  Google Scholar 

  11. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Enzyme Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  12. Uppenberg, J., Hansen, M. T., Patkar, S., & Jones, A. (1994). Structure, 2, 293–308.

    Article  CAS  Google Scholar 

  13. Pirozzi, D., & Grego Jr., G. (2004). Enzyme Microbial Technology, 34, 94–100.

    Article  CAS  Google Scholar 

  14. Yadav, G. D., & Lathi, P. S. (2003). Biochemical Engineering Journal, 16, 245–252.

    Article  CAS  Google Scholar 

  15. Foresti, M. L., & Ferreira, M. L. (2005). Catalysis Today, 107–108, 23–30.

    Article  Google Scholar 

  16. Cao, L., Bornscheuer, U. T., & Schmid, R. D. (1999). Journal of Molecular Catalysis B, Enzymatic, 6, 279–285.

    Article  CAS  Google Scholar 

  17. Lozano, P., Diego, T., Sauer, T., Vaultier, M., Gmouh, S., & Iborra, J. L. (2007). Journal of Supercritical Fluids, 40, 93–100.

    Article  CAS  Google Scholar 

  18. Vasudevan, P. T., López-Cortés, N., Caswell, H., Reyes-Duarte, D., Plou, F. J., & Ballesteros, A., et al. (2004). Biotechnology Letters, 26, 473–477.

    Article  CAS  Google Scholar 

  19. Rodrigues, D. S., Cavalcante, G. P., Ferreira, A. L. O., & Gonçalves, L. R. B. (2007). Chemical and Biochemical Engineering Quarterly (in press).

  20. Palomo, J. M., Muñoz, G., Fernández-Lorente, G., Mateo, C., Fernández-Lafuente, R., & Guisán, J. M. (2002). Journal of Molecular Catalysis B, Enzymatic, 19-20, 279–286.

    Article  CAS  Google Scholar 

  21. Pereira, E. B., Zanin, G. M., & Castro, H. F. (2003). Brazilian Journal of Chemical Engineering, 20, 343–355.

    Article  CAS  Google Scholar 

  22. D’Souza, S. F., & Godbole, S. S. (2002). Journal of Biochemical and Biophysical Methods, 52, 59–62.

    Article  CAS  Google Scholar 

  23. Rocha, C., Ducso, L., Gonçalves, M. P., & Teixeira, J. A. (2005). Spent-grains and zeolites as potencial carriers for trypsin immobilization, 4 Mercosur Congress on Process Systems Engineering Proceedings (CD-ROM), Costa Verde, Brasil.

  24. Freitas, L., Mendes, A. A., & Castro, H. F. (2003). Anais da Associacao Brásileira de Química, 52, 124–128.

    Google Scholar 

  25. Castro, H. F., Lima, R., & Roberto, I. C. (2001). Biotechnology Progress, 17, 1061–1064.

    Article  Google Scholar 

  26. Dey, G., Nagpal, V., & Banerjee, R. (2002). Applied Biochemistry and Biotechnology, 102-103, 303–313.

    Article  CAS  Google Scholar 

  27. Brigida, A. I. S., Pinheiro, A. D. T., Ferreira, A. L. O., Pinto, G. A. S., & Gonçalves, L. R. B. (2007). Applied Biochemistry and Biotechnology, 136-140, 67–80.

    Article  Google Scholar 

  28. Rosa, M. F., Bezerra, F. C., Brígida, A. I. S., & Brígido, A. K. L. (2002), Aproveitamento de resíduos da indústria da água de coco verde como substrato agrícola: 1—Processo de obtenção, VI Seminário Nacional de Resíduos Sólidos Proceedings (CD-ROM), Gramado, Brasil.

  29. Adriano, W. S., Costa-Filho, E. H., Silva, J. A., Giordano, R. L. C., & Goncalves, L. R. B. (2005). Brazilian Journal of Chemical Engineering, 22, 529–538.

    Article  CAS  Google Scholar 

  30. Bastida, A., Sabuquillo, P., Armisen, P., Fernandez-Lafuente, R., Huguet, J., & Guisán, J. M. (1998). Biotechnology and Bioengineering, 58, 486–493.

    Article  CAS  Google Scholar 

  31. Oliveira, P. C., Alves, G. M., & Castro, H. F. (2000). Biochemical Engineering Journal, 5, 63–71.

    Article  Google Scholar 

  32. Wang, Z. -G., Wang, J. -Q., & Xu, Z. -K. (2006). Journal of Molecular Catalysis B, Enzymatic, 42, 45–51.

    Article  Google Scholar 

  33. Pino, G. H., Mesquita, L. M. S., Torem, M. L., & Pinto, G. A. S. (2006). Minerals Engineering, 19, 380–387.

    Article  CAS  Google Scholar 

  34. Akova, A., & Ustun, G. (2000). Biotechnology Letters, 22, 355–359.

    Article  CAS  Google Scholar 

  35. Petersen, M. T. N., Fojan, P., & Petersen, S. B. (2001). Journal of Biotechnology, 85, 115–147.

    Article  Google Scholar 

  36. Rodrigues, D. S., Bezerra, T. G., Bruno, L. M., & Gonçalves, L. R. B. (2004), Imobilização de lipase B de Candida antarctica em suporte hidrofóbico, XV Congresso Brasileiro de Engenharia Química Proceedings (CD-ROM), Curitiba, Brasil.

  37. Castro, H. F., Silva, M. L. C. P., & Silva, G. L. J. P. (2000). Brazilian Journal Of Chemical Engineering, 17, 849–857.

    CAS  Google Scholar 

  38. Bastida, A., Sabuquillo, P., Armisen, P., Fernández-Lafuente, R., Huguet, J., & Guisán, J. M. (1998). Biotechnology and Bioengineering, 58, 486–493.

    Article  CAS  Google Scholar 

  39. Silva, E. A. B., Souza, A. A. U., Rodrigues, A. E., & Souza, S. M. A. G. U. (2006). Brazilian Archives of Biology and Technology, 49, 491–502.

    Google Scholar 

  40. Tischer, W., & Kasche, V. (1999). Trends in Biotechnology, 17, 326–335.

    Article  CAS  Google Scholar 

  41. Park, E. Y., Sato, M., & Kojima, S. (2006). Enzyme and Microbial Technology, 39, 889–896.

    Article  CAS  Google Scholar 

  42. Secundo, F., Carrea, G., Soregaroli, C., Varinelli, D., & Morrone, R. (2001). Biotechnology and Bioengineering, 73, 157–163.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian research-funding agencies FUNCAP (State of Ceará), FINEP, and CNPq (Federal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana R. B. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brígida, A.I.S., Pinheiro, Á.D.T., Ferreira, A.L.O. et al. Immobilization of Candida antarctica Lipase B by Adsorption to Green Coconut Fiber. Appl Biochem Biotechnol 146, 173–187 (2008). https://doi.org/10.1007/s12010-007-8072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8072-4

Keywords

Navigation