Skip to main content
Log in

Substrate Dependency and Effect of Xylanase Supplementation on Enzymatic Hydrolysis of Ammonia-Treated Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreatment based on aqueous ammonia was investigated under two different modes of operation: soaking in aqueous ammonia and ammonia recycle percolation. These processes were applied to three different feedstocks with varied composition: corn stover, high lignin (HL), and low lignin (LL) hybrid poplars. One of the important features of ammonia-based pretreatment is that most of the hemicellulose is retained after treatment, which simplifies the overall bioconversion process and enhances the conversion efficiency. The pretreatment processes were optimized for these feedstocks, taking carbohydrate retention as well as sugar yield in consideration. The data indicate that hybrid poplar is more difficult to treat than corn stover, thus, requires more severe conditions. On the other hand, hybrid poplar has a beneficial property that it retains most of the hemicellulose after pretreatment. To enhance the digestibility of ammonia-treated poplars, xylanase was supplemented during enzymatic hydrolysis. Because of high retention of hemicellulose in treated hybrid poplar, xylanase supplementation significantly improved xylan as well as glucan digestibility. Of the three feedstocks, best results and highest improvement by xylanase addition was observed with LL hybrid poplar, showing 90% of overall sugar yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang, Y. P., & Lynd, L. R. (2004). Biotechnology and Bioengineering, 88(7), 797–824.

    Article  CAS  Google Scholar 

  2. Fernandez-Bolanos, J., Felizon, B., Heredia, A., & Jimenez, A. (1999). Bioresource Technology, 68, 121–132.

    Article  CAS  Google Scholar 

  3. Schwald, W., Brownell, H. H., & Saddler, J. N. (1988). Journal of Wood Chemistry and Technology, 8(4), 543–560.

    Article  CAS  Google Scholar 

  4. Allen, S. G., Schulman, D., Lichwa, J., Antal Jr., M. J., & Lynd, L. R. (2001). Industrial & Engineering Chemistry Research, 40(13), 2934–2941.

    Article  CAS  Google Scholar 

  5. Garrote, G., Dominguez, H., & Parajó, J. C. (2002). Journal of Food Engineering, 52, 211–218.

    Article  Google Scholar 

  6. Váquez, M. J., Alonso, J. L., Dominguesz, H., & Parajó, J. C. (2001). W. J. Microb. Biotechnol, 17, 817–822.

    Article  Google Scholar 

  7. Burns, D. S., Ooshima, H., & Converse, A. O. (1989). Applied Biochemistry and Biotechnology, 20–21, 79–94.

    Google Scholar 

  8. Jacobsen, S., & Wyman, C. E. (2000). Applied Biochemistry and Biotechnology, 84–86, 81–96.

    Article  Google Scholar 

  9. Dale, B. E. (1986). US Patent 4,600,590.

  10. Dale, B. E., Leong, C. K., Pham, T. K., Esquivel, V. M., Rios, I., & Latimer, V. M. (1996). Bioresource Technology, 56(1), 111–116.

    Article  CAS  Google Scholar 

  11. Foster, B. L., Dale, B. E., & Doran-Peterson, J. B. (2001). Applied Biochemistry and Biotechnology, 91(3), 269–282.

    Article  Google Scholar 

  12. Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Applied Biochemistry and Biotechnology, 63–65, 3–19.

    Article  Google Scholar 

  13. Chang, V. S., & Holtzapple, M. T. (2000). Applied Biochemistry and Biotechnology, 84, 5–37.

    Article  Google Scholar 

  14. Iyer, P. V., Wu, Z. W., Kim, S. B., & Lee, Y. Y. (1996). Applied Biochemistry and Biotechnology, 57/58, 121–132.

    CAS  Google Scholar 

  15. Kim, S. B., & Lee, Y. Y. (1996). Applied Biochemistry and Biotechnology, 57/58, 147–156.

    CAS  Google Scholar 

  16. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Bioresource Technology, 74, 17–24.

    Article  CAS  Google Scholar 

  17. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  18. Yang, B., & Charles, E. W. (2004). Biotechnology and Bioengineering, 86(1), 88–95.

    Article  CAS  Google Scholar 

  19. Kim, J. S., Lee, Y. Y., & Torget, R. W. (2001). Applied Biochemistry and Biotechnology, 91–93, 331–340.

    Article  Google Scholar 

  20. Xiang, Q., Lee, Y. Y., & Torget, R. W. (2004). Applied Biochemistry and Biotechnology, 13–116, 1127–1138.

    Article  Google Scholar 

  21. Negro, M. J., Manzanares, P., Oliva, J. M., Ballesteros, I., & Ballesteros, M. (2003). Biomass and Bioenergy, 25–3, 301–308.

    Article  CAS  Google Scholar 

  22. Chua, M. G. S., & Wayman, M. (1979). Canadian Journal Chemistry, 57, 1141–1149.

    Article  CAS  Google Scholar 

  23. Du Preez, J. C. (1994). Enzyme and Microbial Technology, 55, 1–33.

    Google Scholar 

  24. Hahn-Hagerdal, B., Jeppson, H., Skoog, K., & Prior, B. A. (1994). Enzyme and Microbial Technology, 16, 933–943.

    Article  Google Scholar 

  25. Nathan, M., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., & Holtzapple, M., et al. (2005). Bioresource Technology, 96–6, 673–686.

    Google Scholar 

  26. Berlin, A., Gikes, N., Kilburn, D., Maximenko, V., Bura, R., & Markov, A., et al. (2006). Applied Biochemistry and Biotechnology, 129–132, 528–545.

    Article  Google Scholar 

  27. Thomson, J. A. (1993). FEMS Microbiology Reviews, 104, 65–92.

    Article  CAS  Google Scholar 

  28. Saha, B. C. (2003). Journal of Industrial Microbiology & Biotechnology, 30, 279–291.

    Article  CAS  Google Scholar 

  29. Kim, T. H., & Lee, Y. Y. (2005). Applied Biochemistry and Biotechnology, 121–124, 1119–1132.

    Article  Google Scholar 

  30. Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90, 39–47.

    Article  CAS  Google Scholar 

  31. Kim, S. B., Um, B. H., & Park, S. C. (2001). Appl. Biochem. Biotechnol, 91-93, 81–94.

    Article  CAS  Google Scholar 

  32. NREL (2004) Laboratory analytical procedures (draft version). http://www1.eere.energy.gov/biomass/analytical_procedures.html.

  33. Cao, Y., & Huimin, T. (2005). Enzyme and Microbial Technology, 36, 314–317.

    Article  CAS  Google Scholar 

  34. Kim, S. B., & Lee, Y. Y. (2002). Bioresource Technology, 83, 165–171.

    Article  CAS  Google Scholar 

  35. Alen, R. (2000). In Paper making science and technology. Published in cooperation with the Finnish Paper Engineers Association and TAPPI, pp. 58–104.

  36. Ericson, T., Peterson, G., & Samuelson, O. (1977). Wood Science and Technology, 11, 219–223.

    Article  Google Scholar 

  37. Andersson, S. I., & Samuelson, O. (1978). Svensk Papperstil, 81, 79–84.

    CAS  Google Scholar 

  38. Vian, B., Reis, D., Mosiniak, M., & Ronald, J. C. (1986). Protoplasm, 131, 185–199.

    Article  CAS  Google Scholar 

  39. Reis, D., Vian, B., Chanzy, H., & Ronald, J. C. (1991). Biology of the Cell, 73, 173–178.

    Article  CAS  Google Scholar 

  40. Mora, F., Ruel, K., Comtat, J., & Joseleau, J. P. (1986). Holzforschung, 40, 85–91.

    Article  CAS  Google Scholar 

  41. Yang, B., & Wyman, C. E. (2004). US Patent application 200401185542.

  42. Lu, Y., Yang, B., Gregg, D., Saddler, J. N., & Mansfield, S. D. (2002). Applied biochemistry and biotechnology, 98–100, 641–654.

    Article  Google Scholar 

  43. Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Enzyme and Microbial Technology, 31, 353–364.

    Article  CAS  Google Scholar 

  44. Kanda, T., Wakabayashi, K., & Nisizawa, K. (1976). Journal of Biochemistry (Tokyo), 79, 989–995.

    CAS  Google Scholar 

  45. Wood, T. M., & McCrae, S. I. (1986). Phytochemistry, 25, 1053–1055.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support for this research from the US Department of Energy (financial assistance no. DE-PS36–00GO10482, channeled through Dartmouth College). They also would like to thank Genencor International (Paulo Alto, CA, USA) for providing enzymes used in this research and NREL for providing the feedstocks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R., Kim, T.H. & Lee, Y.Y. Substrate Dependency and Effect of Xylanase Supplementation on Enzymatic Hydrolysis of Ammonia-Treated Biomass. Appl Biochem Biotechnol 148, 59–70 (2008). https://doi.org/10.1007/s12010-007-8071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8071-5

Keywords

Navigation