Skip to main content
Log in

An Alternative Application to the Portuguese Agro-Industrial Residue: Wheat Straw

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of alkaline treatments of the wheat straw with sodium hydroxide were investigated. The optimal condition for extraction of hemicelluloses was found to be with 0.50 mol/l sodium hydroxide at 55 °C for 2 h. This resulted in the release of 17.3% of hemicellulose (% dry starting material), corresponding to the dissolution of 49.3% of the original hemicellulose. The yields were determined by gravimetric analysis and expressed as a proportion of the starting material. Chemical composition and physico-chemical properties of the samples of hemicelluloses were elucidated by a combination of sugar analyses, Fourier transform infrared (FTIR), and thermal analysis. The results showed that the treatments were very effective on the extraction of hemicelluloses from wheat straw and that the extraction intensity (expressed in terms of alkali concentration) had a great influence on the yield and chemical features of the hemicelluloses. The FTIR analysis revealed typical signal pattern for the hemicellulosic fraction in the 1,200–1,000 cm−1 region. Bands between 1,166 and 1,000 cm−1 are typical of xylans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gonçalves, A. R., Benar, P., Costa, S. M., Ruzene, D. S., Moriya, R. Y., & Luz, S. M., et al. (2005). Applied Biochemistry and Biotechnology, 121, 821–826.

    Article  Google Scholar 

  2. Küçük, M. M., & Demirbas, A. (1997). Energy Conversion Management, 38(2), 151–165.

    Article  Google Scholar 

  3. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  4. Montane, D., Farriol, X., Salvado, J., Jollez, P., & Chornet, E. (1998). Journal of Wood Chemistry and Technology, 18, 171.

    Article  CAS  Google Scholar 

  5. Fengel, D., & Wegener, G. (1989). Wood chemistry, ultrastructure, reactions p. (p. 613). Berlin: Walter de Gruyter.

    Google Scholar 

  6. McDougall, G. J., Morrison, I. M., Stewart, D., Weyers, J. D. B., & Hillman, J. R. J. (1993). Science of Food and Agriculture, 621–20.

    Article  CAS  Google Scholar 

  7. Jackson, M. G. (1977). Animal Feed Science and Technology, 2, 105–130.

    Article  Google Scholar 

  8. Spencer, R. R., & Akin, D. E. (1980). Journal of Animal Science, 51(5), 1189–1196.

    Google Scholar 

  9. Lima, D. U., Oliveira, R. C., & Buckeridge, M. S. (2003). Carbohydrate Polymers, 52, 367–373.

    Article  CAS  Google Scholar 

  10. Saake, B., Busse, T., & Puls, J. (2005). Appita, 2, 141–146.

    Google Scholar 

  11. Doner, L. W., & Hicks, K. (1997). Cereal Chemistry, 74, 176.

    Article  CAS  Google Scholar 

  12. Rocha, G. J. M. (2000). PhD thesis, São Carlos/Universidade de São Paulo, Brazil,

  13. Browing, B. L. (1963). The chemistry of wood p. (p. 574). New York: Interscience.

    Google Scholar 

  14. Ruzene, D. S., Gonçalves, A. R., Teixeira, J. A., & Pessoa De Amorim, M. T. (2007). Animal Feed Science and Technology, 136–140.

  15. Ferraz, A., Rodriguez, J., Freer, J., & Baeza, J. (2000). Bioresource Technology, 74, 201–212.

    Article  CAS  Google Scholar 

  16. Wilkie, K. C. B. (1979). Advances in Carbohydrate Chemistry and Biochemistry, 36, 215–264.

    CAS  Google Scholar 

  17. Ebringerová, A., & Heinze, T. (2000). Macromolecular rapid communications, 21, 542–556.

    Article  Google Scholar 

  18. Ternrud, I. (1987). Degradation of untreated and alkalitreated straw polysaccharides in ruminants. Uppsala: The Swedish University of Agricultural Sciences.

    Google Scholar 

  19. Faix, O. (1991). Holzforschung, 45, 21–27.

    Article  CAS  Google Scholar 

  20. Gonçalves, A. R., & Ruzene, D. S. (2001). Applied Biochemistry and Biotechnology, 91–93, 63–70.

    Article  Google Scholar 

  21. Kacurakova, M., Belton, P. S., Wilson, R. H., Hirsch, J., & Ebringerova, A. (1998). Journal of the Science of Food and Agriculture, 77, 38–44.

    Article  CAS  Google Scholar 

  22. Kacurakora, M., Ebringerova, A., Hirsch, J., & Hromadkova, Z. (1994). Journal of the Science of Food and Agriculture, 66, 423.

    Article  Google Scholar 

  23. Gupta, S., Madan, R. N., & Bansal, M. C. (1987). Tappi Journal, 70, 113–114.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from FCT (Fundação para a Ciência e Tecnologia/Portugal, SFRH/BPD/26156/2005 and SFRH/BPD/26108/2005), as well as from FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo/Brazil) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise S. Ruzene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruzene, D.S., Silva, D.P., Vicente, A.A. et al. An Alternative Application to the Portuguese Agro-Industrial Residue: Wheat Straw. Appl Biochem Biotechnol 147, 85–96 (2008). https://doi.org/10.1007/s12010-007-8066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8066-2

Keywords

Navigation