Skip to main content

Advertisement

Log in

High-resolution Thermogravimetric Analysis For Rapid Characterization of Biomass Composition and Selection of Shrub Willow Varieties

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The cultivation of shrub willow (Salix spp.) bioenergy crops is being commercialized in North America, as it has been in Europe for many years. Considering the high genetic diversity and ease of hybridization, there is great potential for genetic improvement of shrub willow through traditional breeding. The State University of New York—College of Environmental Science and Forestry has an extensive breeding program for the genetic improvement of shrub willow for biomass production and for other environmental applications. Since 1998, breeding efforts have produced more than 200 families resulting in more than 5,000 progeny. The goal for this project was to utilize a rapid, low-cost method for the compositional analysis of willow biomass to aid in the selection of willow clones for improved conversion efficiency. A select group of willow clones was analyzed using high-resolution thermogravimetric analysis (HR-TGA), and significant differences in biomass composition were observed. Differences among and within families produced through controlled pollinations were observed, as well as differences by age at time of sampling. These results suggest that HR-TGA has a great promise as a tool for rapid biomass characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perlack, R. D., Wright, L. L., Turhollow, A., Graham, R., Stokes, B., & Erbach, D. (2005). Tech. Rep. ORNL/TM-2005/66. Oak Ridge, TN: Oak Ridge National Laboratory.

    Google Scholar 

  2. Volk, T. A., Verwijst, T., Tharakan, P. J., Abrahamson, L. P., & White, E. H. (2004). Frontiers in Ecology and the Environment, 2, 411–418.

    Article  Google Scholar 

  3. Volk, T. A., Abrahamson, L. P., Nowak, C. A., Smart, L. B., Tharakan, P. J., & White, E. H. (2006). Biomass and Bioenergy, 30, 715–727.

    Article  Google Scholar 

  4. Smart, L. B., Volk, T. A., Lin, J., Kopp, R. F., Phillips, I. S., Cameron, K. D., et al. (2005). Unasylva, 221(56), 51–55.

    Google Scholar 

  5. Kopp, R. F., Smart, L. B., Maynard, C. A., Isebrands, J. G., Tuskan, G. A., & Abrahamson, L. P. (2001). The Forestry Chronicle, 77, 287–292.

    Google Scholar 

  6. Argus, G. W. (1997). Infrageneric classification of Salix (Salicaceae) in the New World. Ann Arbor, MI: The American Society of Plant Taxonomists.

    Google Scholar 

  7. Kopp, R. F. (2000). Ph.D. thesis, State University of New York College of Environmental Science and Forestry.

  8. Himmel, M. E., Ding, S. Y., Johnson, D. - K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Science, 315, 804–807.

    Article  CAS  Google Scholar 

  9. US DOE (2006). US Department of Energy Office of Science and Office of Energy efficiency and renewable energy. Available at: doegenomestolife.org/biofuels/.

  10. Labbe, N., Rials, T. G., Kelley, S. S., Cheng, Z. - M., Kim, J. - Y., & Li, Y. (2005). Wood Science and Technology, 39, 61–77.

    Article  CAS  Google Scholar 

  11. Hames, B. R., Thomas, S. R., Sluiter, A. D., Roth, C. J., & Templeton, D. W. (2003). Applied Biochemistry and Biotechnology, 105, 5–16.

    Article  Google Scholar 

  12. Kelley, S., Rials, T., Snell, R., Groom, L., & Sluiter, A. (2004). Wood Science and Technology, 38, 257–276.

    Article  CAS  Google Scholar 

  13. Tuskan, G. A., West, D., Bradshaw, H. D., Neale, D., Sewell, M., Wheeler, N., et al. (1999). Applied Biochemistry and Biotechnology, 77, 55–65.

    Article  Google Scholar 

  14. Shafizadeh, F., & Chin, P. P. S. (1977). In I. S. Goldstein (Ed.) Wood technology: Chemical aspects (vol. 43, pp. 57–81). Washington, DC: American Chemical Society Symposium Series.

  15. Cozzani, V., Lucchesti, A., Stoppato, G., & Maschio, G. (1997). Canadian Journal of Chemical Engineering, 75, 127–133.

    Article  CAS  Google Scholar 

  16. Stipanovic, A. J., Goodrich, J., & Hennessy, P. (2004). In American Chemical Society Symposium on “Novel Analytical Tools in the Characterization of Polysaccharides”. Cellulose and Renewable Materials Division.

  17. Kopp, R. F., Smart, L. B., Maynard, C., Tuskan, G., & Abrahamson, L. P. (2002). Theoretical and Applied Genetics, 105, 106–112.

    Article  CAS  Google Scholar 

  18. Cervera, M. T., Remington, D., Frigerio, J. - M., Storme, V., Ivens, B., Boerjan, W., et al. (2000). Canadian Journal of Forest Research, 30, 1608–1616.

    Article  CAS  Google Scholar 

  19. Cervera, M. T., Storme, V., Soto, A., Ivens, B., Van Montagu, M., Rajora, O. P., et al. (2005). Theoretical and Applied Genetics, 111, 1440–1456.

    Article  CAS  Google Scholar 

  20. Blankenhorn, P. R., Bowersox, T. W., Kuklewski, K. M., Stimely, G. L., & Murphy, W. K. (1985). Wood and Fiber Science, 17, 148–158.

    CAS  Google Scholar 

  21. Kenney, W. A., Gambles, R. L., & Sennerby-Forsse, L. (1992). In C. Mitchell, J. Forb-Robertson, T. Hinckley, & L. Sennerby-Forsse (Eds.) Ecophysiology of short rotation forest crops pp. 267–284. Elsevier: Essex, England.

    Google Scholar 

  22. Adler, A., Verwijst, T., & Aronsson, P. (2005). Biomass and Bioenergy, 29, 102–113.

    Article  CAS  Google Scholar 

  23. Kiemle, D. J., Stipanovic, A. J., & Mayo, K. E. (2004). In P. Gatenholm, & M. Tenkanen (Eds.), ACS Symposium Series 864 pp. 122–139. Washington, DC: American Chemical Society.

Download references

Acknowledgments

This work was funded by the McIntire–Stennis Cooperative Forestry Research Program of the US Department of Agriculture. The authors would also like to acknowledge funding of the willow breeding program at SUNY-ESF from the New York State Energy Research and Development Authority (NYSERDA). Appreciation is also expressed to Dr. Larry Abrahamson, Dr. Tim Volk, Dr. Ed White, and Dr. Bill Winter for their support and advice as collaborators with this research and to Mark Appleby and Ken Burns for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence B. Smart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serapiglia, M.J., Cameron, K.D., Stipanovic, A.J. et al. High-resolution Thermogravimetric Analysis For Rapid Characterization of Biomass Composition and Selection of Shrub Willow Varieties. Appl Biochem Biotechnol 145, 3–11 (2008). https://doi.org/10.1007/s12010-007-8061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8061-7

Keywords

Navigation