Skip to main content

Advertisement

Log in

Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mgO2/gDW h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mgO2/gDW h. The carbon source consumption is linear during the whole process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rahman, K. S. M., Banat, I. M., Thahira, J., Thayumanavan, T., & Lakshmanaperumalsamy, P. (2002). Bioremediation of gasoline contaminated soil by a bacterium consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresource Technology, 81, 25–32.

    Article  CAS  Google Scholar 

  2. Rahman, K. S. M., Rahman, T. J., Kourkoutas, Y., Petsas, I., Marchant, R., & Banat, I. M. (2003). Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 90, 159–168.

    Article  CAS  Google Scholar 

  3. Banat, I. M. (1995). Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technology, 51, 1–12.

    Article  CAS  Google Scholar 

  4. Parkinson, M. (1985). Bio-surfactants. Biotechnology Advances, 3, 65–83.

    Article  CAS  Google Scholar 

  5. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64.

    CAS  Google Scholar 

  6. Gruber, T., Chmiel, H., Kappeli, O., Sticher, P., & Fiechter, A. (1993). Integrated process for continuous rhamnolipid biosynthesis. In N. Kosaric (Eds.) Biosurfactants (surfactants science series) (vol. 48, (pp. 157–173)). New York: Marcel Dekker.

    Google Scholar 

  7. Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1–15.

    Article  CAS  Google Scholar 

  8. Cutayar, J., Poillon, D., & Cutayar, S. (1990). Process for the controlled oxygenation of an alcoholic fermentation must or wort. US Patent 4,978,545.

  9. Santa Anna, L. M. M., Soriano, A. U., Gomes, A. C., Menezes, E. P., Gutarra, M. L. E., Freire, D. M. G., et al. (2007). Use of biosurfactant in the removal of oil from contaminated sandy soil. Journal of Chemical Technology & Biotechnology, 82(7), 687–691.

    Article  Google Scholar 

  10. Jarvis, F. G., & Johnson, M. J. (1949). A glyco-lipid produced by Pseudomonas aeruginosa. Journal of the American Chemical Society, 71, 4121–4126.

    Article  Google Scholar 

  11. Helvaci, S. S., Peker, S., & zdemir, G. (2004). Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2. Colloids and Surfaces B: Biointerfaces, 35, 225–233.

    Article  CAS  Google Scholar 

  12. Santa Anna, L. M. (2000). Produção de biossurfactante do tipo ramnolipídeo por Pseudomonas sp. M.S. thesis, Faculdade de Farmácia/Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

  13. Santa Anna, L. M., Sebastian, G. V., Menezes, E. P., Alves, T. L. M., Santos, A. S., & Pereira Jr., N., et al. (2002). Production of biosurfactants from Pseudomonas aeruginosa PA1 isolated in oil environments. Brazilian Journal of Chemical Engineering, 19(2), 159–166.

    Article  Google Scholar 

  14. Santa Anna, L. M., Sebastian, G. V., Soriano, A. U., Gomes, A. C., Volpon, A., Freire, D. M. G., et al. (2004). Biossurfactante e uso do mesmo em remediação de solos impactados por óleo. Patent PI0405952-2, Petróleo Brasileiro S.A., Brazil.

  15. Pham, T. H., Webb, J. S., & Rehm, B. H. A. (2004). The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology, 150, 3405–3413.

    Article  CAS  Google Scholar 

  16. ACS Committee on Analytical Reagents (2006). Colorimetry and turbidimetry. Reagent chemicals: Specifications and procedures10 edn, (pp. 32–41). Oxford: American Chemical Society–Oxford University Press.

    Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  18. Charney, J., & Tomarelli, R. M. (1947). A colorimetric method for the determination of the proteolytic activity of duodenal juice. Journal of Biological Chemistry, 171, 501–505.

    CAS  Google Scholar 

  19. Braga, G. U. L., Messias, C. L., & Vencovsky, R. (1994). Estimates of genetic parameters related to protease production by Metarhizium anisopliae. Journal of Invertebrate Pathology, 54, 5–12.

    Google Scholar 

  20. Blanch, H. W., & Clark, D. S. (1997). Biochemical engineering. New York: Marcel Dekker.

    Google Scholar 

  21. Jeong, H., Lim, D., Hwang, S., Ha, S., & Kong, J. (2004). Rhamnolipid production by Pseudomonas aeruginosa immobilized in polyvinyl alcohol beads. Biotechnology Letters, 26, 35–39.

    Article  CAS  Google Scholar 

  22. Benincasa, M., Contiero, J., Manresa, M. A., & Moraes, I. O. (2002). Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. Journal of Food Engineering, 54, 283–288.

    Article  Google Scholar 

  23. Haba, E., Espuny, M. J., Busquets, M., & Manresa, A. (2000). Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Journal of Applied Microbiology, 88, 379–387.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico de Araujo Kronemberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronemberger, F.A., Santa Anna, L.M.M., Fernandes, A.C.L.B. et al. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor. Appl Biochem Biotechnol 147, 33–45 (2008). https://doi.org/10.1007/s12010-007-8057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8057-3

Keywords

Navigation