Skip to main content
Log in

Improving Activity of Salt-Lyophilized Enzymes in Organic Media

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lyophilization with salts has been identified as an important method of activating enzymes in organic media. Using salt-activated enzymes to transform molecules tethered to solid surfaces in organic phase requires solubilization of enzymes in the solvents. Methods of improving performance of salt-lyophilized enzymes, further, via chemical modification, and use of surfactants and surfactants to create fine emulsions prior to lyophilization are investigated. The reaction system used is transesterification of N-acetyl phenylalanine ethyl ester with methanol or propanol. Initial rate of formation of amino acid esters by subtilisin Carlsberg (SC) was studied and found to increase two to sevenfold by either chemical modification or addition of surfactants in certain solvents, relative to the salt (only)-lyophilized enzyme. The method to prepare highly dispersed enzymes in a salt-surfactant milieu also improved activity by two to threefold. To test the effect of chemical modification on derivatization of drug molecules, acylation of bergenin was investigated using chemically modified SC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altreuter, D. H., & Clark, D. S. (1999). Current Opinion in Biotechnology, 10, 130–136.

    Article  CAS  Google Scholar 

  2. Michels, P. C., Khmelnitsky, Y. L., Dordick, J. S., & Clark, D. S. (1998). Trends in Biotechnology, 16, 210–215.

    Article  CAS  Google Scholar 

  3. Rich, J. O., Michels, P. C., & Khmelnitsky, Y. L. (2002). Current Opinion in Chemical Biology, 6, 161–167.

    Article  CAS  Google Scholar 

  4. Dordick, J. S. (1992). Biotechnology Progress, 8, 259–267.

    Article  CAS  Google Scholar 

  5. Adamczak, M., & Krishna, S. H. (2004). Food Technology and Biotechnology, 42, 251–264.

    CAS  Google Scholar 

  6. Gupta, M. N., & Roy, I. (2004). European Journal of Biochemistry, 271, 2575–2583.

    Article  CAS  Google Scholar 

  7. Lee, M. Y., & Dordick, J. S. (2002). Current Opinion in Biotechnology, 13, 376–384.

    Article  CAS  Google Scholar 

  8. D’Souza, S. F. (1999). Current Science, 77, 69–79.

    CAS  Google Scholar 

  9. Dai, L. Z., & Klibanov, A. M. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 9475–9478.

    Article  CAS  Google Scholar 

  10. Morgan, J. A., & Clark, D. S. (2004). Biotechnology and Bioengineering, 85, 456–459.

    Article  CAS  Google Scholar 

  11. Sawae, H., Sakoguchi, A., Nakashio, F., & Goto, M. (2002). Journal of Chemical Engineering of Japan, 35, 677–680.

    Article  CAS  Google Scholar 

  12. Song, B. D., Ding, H., Wu, J. C., Hayashi, Y., Talukder, M., & Wang, S. C. (2003). Chinese Journal of Chemical Engineering, 11, 601–603.

    CAS  Google Scholar 

  13. Mine, Y., Fukunaga, K., Yoshimoto, M., Nakao, K., & Sugimura, Y. (2001). Journal of Bioscience and Bioengineering, 92, 539–543.

    Article  CAS  Google Scholar 

  14. Wang, L. F., Zhu, G. Y., Wang, P., & Newby, B. M. Z. (2005). Biotechnology Progress, 21, 1321–1328.

    Article  CAS  Google Scholar 

  15. Hudson, E. P., Eppler, R. K., & Clark, D. S. (2005). Current Opinion in Biotechnology, 16, 637–643.

    Article  CAS  Google Scholar 

  16. Altreuter, D. H., Dordick, J. S., & Clark, D. S. (2003). Biotechnology and Bioengineering, 81, 809–817.

    Article  CAS  Google Scholar 

  17. Prior, R. L., & Cao, G. (1999). Proceedings of the Society for Experimental Biology and Medicine, 220, 255–261.

    Article  CAS  Google Scholar 

  18. Mozhaev, V. V., Budde, C. L., Rich, J. O., Usyatinsky, A. Y., Michels, P. C., Khmelnitsky, Y. L., et al. (1998). Tetrahedron, 54, 3971–3982.

    Article  CAS  Google Scholar 

  19. Bindhu, L. V., & Abraham, T. E. (2003). Biochemical Engineering Journal, 15, 47–57.

    Article  CAS  Google Scholar 

  20. Kwon, O. H., Imanishi, Y., & Ito, Y. (1999). Biotechnology and Bioengineering, 66, 265–270.

    Article  CAS  Google Scholar 

  21. Paradkar, V. M., & Dordick, J. S. (1994). Biotechnology and Bioengineering, 43, 529–540.

    Article  CAS  Google Scholar 

  22. Clark, D. S. (2004). Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 359, 1299–1307.

    Article  CAS  Google Scholar 

  23. Ru, M. T., Wu, K. C., Lindsay, J. P., Dordick, J. S., Reimer, J. A., & Clark, D. S. (2001). Biotechnology and Bioengineering, 75, 187–196.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support from the National Institute of Health under the Bioengineering Research Partnerships. Initial project direction and assistance from Dr. Jonathan Dordick is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijeet P. Borole.

Additional information

The submitted manuscript has been authored by a contractor of the US Government under contract No. DE-AC05-00OR22725. Accordingly, the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borole, A.P., Davison, B.H. Improving Activity of Salt-Lyophilized Enzymes in Organic Media. Appl Biochem Biotechnol 146, 215–222 (2008). https://doi.org/10.1007/s12010-007-8033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8033-y

Keywords

Navigation