Skip to main content
Log in

Immobilization of Horseradish Peroxidase on Nonwoven Polyester Fabric Coated with Chitosan

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The immobilization of horseradish peroxidase (HRP) on composite membrane has been investigated. This membrane was prepared by coating nonwoven polyester fabric with chitosan glutamate in the presence of glutraldehyde as a crosslinking agent. The physico-chemical properties of soluble and immobilized HRP were evaluated. The soluble HRP lost 90% of its activity after 4 weeks of storage at 4°C, whereas the immobilized enzyme retained 85% of its original activity at the same time. A reusability study of immobilized HRP showed that the enzyme retained 54% of its activity after 10 cycles of reuse. Soluble and immobilized HRP showed the same pH optima at pH 5.5. The immobilized enzyme had significant stability at different pH values, where it had maximum stability at pH 3.0 and 6.0. The kinetic properties indicated that the immobilized enzyme had more affinity toward substrates than soluble enzyme. The soluble and immobilized enzymes had temperature optima at 30 and 40°C and were stable up to 40 and 50°C, respectively. The stability of HRP against metal ion inactivation was improved after immobilization. Immobilized HRP exhibited high resistance to proteolysis by trypsin. The immobilized HRP was more resistant to inactivation induced by urea, Triton X-100, and organic solvents compared to its soluble counterpart. The immobilized HRP showed very high yield of immobilization and markedly high stabilization against several forms of denaturants that offer potential for several applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ryu, K., McEldon, J. M., Pokora, A. R., Cyrus, W., & Dordick, J. S. (1993). Biotechnology and Bioengineering, 42, 807–814.

    Article  CAS  Google Scholar 

  2. Lobarzewsky, J., & Ginalska, G. (1995). Plant Peroxidase Newsletter, 6, 3–7.

    Google Scholar 

  3. Duran, N., & Esposito, E. (2000). Applied Catalysis. B, Environmental, 28, 83–99.

    Article  CAS  Google Scholar 

  4. Kim, G.-Y., & Moon, S.-H. (2005). Korean Journal of Chemical Engineering, 22, 52–60.

    Article  CAS  Google Scholar 

  5. McEldon, J. P., & Dordick, J. S. (1996). Biotechnology Progress, 12, 555–558.

    Article  Google Scholar 

  6. Husain, Q., & Jan, U. (2000). Journal of Scientific & Industrial Research, 59, 286–293.

    CAS  Google Scholar 

  7. Lee, K. B., Gu, M. B., & Moon, S. H. (2003). Water Research, 37, 983–988.

    Article  CAS  Google Scholar 

  8. Akhtar, S., Khan, A. A., & Husain, Q. (2005). Chemosphere, 60, 291–301.

    Article  CAS  Google Scholar 

  9. Kulshrestha, Y., & Husain, Q. (2006). Biomolecular Engineering, 23, 291–297.

    Article  CAS  Google Scholar 

  10. Zhang, J. Z., Li, B., Wang, Z. X., Cheng, G. J., & Dong, S. J. (1999). Analytica Chimica Acta, 388, 71–78.

    Article  CAS  Google Scholar 

  11. Chen, W. B., & Pardue, H. L. (2000). Analytica Chimica Acta, 409, 123–130.

    Article  CAS  Google Scholar 

  12. Xiao, Y., Ju, H.-X., & Chen, H.-Y. (2000). Analytical Biochemistry, 278, 22–28.

    Article  CAS  Google Scholar 

  13. Liu, B. H., Yan, F., Kong, J. L., & Deng, J. Q. (1999). Analytica Chimica Acta, 386, 31–39.

    Article  CAS  Google Scholar 

  14. Yabuki, S., Mizutani, F., & Hirata, Y. (2000). Sensors and Actuators B, 65, 49–51.

    Article  Google Scholar 

  15. Fortier, G., Brassard, E., & Belanger, D. (1990). Biosensors & Bioelectronics, 5, 473–490.

    Article  CAS  Google Scholar 

  16. Sergereva, T. A., Lavrik, N. V., Rachkov, A. E., Kazantseva, Z. I., Piletsky, S. A., & El’skaya, A. V. (1999). Analytica Chimica Acta, 391, 289–297.

    Article  Google Scholar 

  17. Tatsuma, T., Gondaira, M., & Watanabe, T. (1992). Analytical Chemistry, 64, 1183–1187.

    Article  CAS  Google Scholar 

  18. Vreeke, M., Maidan, R., & Heller, A. (1992). Analytical Chemistry, 64, 3084–3090.

    Article  CAS  Google Scholar 

  19. Coche-Guerente, L., Cosnier, S., Innocent, C., & Mailley, P. (1995). Analytica Chimica Acta, 311, 23–30.

    Article  CAS  Google Scholar 

  20. Xiao, Y., Ju, H.-X., & Chen, H.-Y. (1999). Analytica Chimica Acta, 391, 73–82.

    Article  CAS  Google Scholar 

  21. Huang, R. Y. M., Moon, G. Y., & Pal, R. (2001). Journal of Membrane Science, 184, 1–15.

    Article  CAS  Google Scholar 

  22. Krajewska, B. (2004). Enzyme and Microbial Technology, 35, 126–139.

    Article  CAS  Google Scholar 

  23. Chellapandian, M., & Krishnan, M. R. V. (1998). Process Biochemistry, 33, 595–600.

    Article  CAS  Google Scholar 

  24. Itoyama, K., Tokura, S., & Hayashi, T. (1994). Biotechnology Progress, 10, 225–229.

    Article  CAS  Google Scholar 

  25. Carvalho, G. M., Alves, T. L., & Freire, D. M. (2000). Applied Biochemistry and Biotechnology, 84, 791–800.

    Article  Google Scholar 

  26. Miao, Y., & Tan, S. N. (2001). Analytica Chimica Acta, 437, 87–93.

    Article  CAS  Google Scholar 

  27. Shalaby, S. W. (1996). In B. D. Ratner, A. S. Hoffman, & F. Schoen (Eds.), Biomaterials science: An introduction to materials in medicine (pp. 118–124). San Diego: Academic Press.

    Google Scholar 

  28. Gumusderelioglu, M., & Turkoglu, H. (2002). Biomaterials, 23, 3927–3935.

    Article  CAS  Google Scholar 

  29. Mohamed, S. A., Mohamed, T. M., El-Badry, M. O., & Fahmy, A. S. (2007). Bulletin of the National Research Center, 32, 53–65.

    CAS  Google Scholar 

  30. Miranda, M. V., Fernandez Lahor, H. M., & Cascone, O. (1995). Applied Biochemistry and Biotechnology, 53, 147–154.

    Article  CAS  Google Scholar 

  31. Aly, A. S. (1998). Die Makromolekulare Chemie, 259, 13–18.

    Article  CAS  Google Scholar 

  32. Guisan, J. M., Bastida, A., Cuesta, C., Fernandez-Lafuente, R., & Rosell, C. M. (1991). Biotechnology and Bioengineering, 38, 1144–1152.

    Article  CAS  Google Scholar 

  33. Wang, G., Xu, J.-J., Chen, H.-Y., & Lu, Z.-H. (2003). Biosensors & Bioelectronics, 18, 335–343.

    Article  CAS  Google Scholar 

  34. Mielgo, I., Palma, C., Guisan, J. M., Fernandez-Lafuente, R., Moreira, M. T., Feijoo, G., et al. (2003). Enzyme and Microbial Technology, 32, 769–775.

    CAS  Google Scholar 

  35. Xu, Q., Mao, C., Liu, N.-N., Zhu, J.-J., & Shen, J. (2006). Reactive Functional Polymers, 66, 863–870.

    Article  CAS  Google Scholar 

  36. Bora, U., Kannan, K., & Nahar, P. (2005). Journal of Membrane Science, 250, 215–222.

    Article  CAS  Google Scholar 

  37. Lobarzewski, J., Brzyska, M., & Wojcik, A. (1990). Journal of Molecular Catalysis, 59, 373–383.

    Article  CAS  Google Scholar 

  38. Kulshrestha, Y., & Husain, Q. (2006). Enzyme and Microbial Technology, 38, 470–477.

    Article  CAS  Google Scholar 

  39. Mozhaev, V. V., Seregeeva, M. V., Belova, A. B., & Khmelnitsky, Y. L. (1990). Biotechnology and Bioengineering, 35, 653–659.

    Article  CAS  Google Scholar 

  40. Fernandez-Lafuente, R., Wood, A. N. P., & Cowan, D. A. (1995). Biotechnology Techniques, 9, 1–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, S.A., Aly, A.S., Mohamed, T.M. et al. Immobilization of Horseradish Peroxidase on Nonwoven Polyester Fabric Coated with Chitosan. Appl Biochem Biotechnol 144, 169–179 (2008). https://doi.org/10.1007/s12010-007-8026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8026-x

Keywords

Navigation