Skip to main content
Log in

Comparison between Different Hydrolysis Processes of Vine-Trimming Waste to Obtain Hemicellulosic Sugars for Further Lactic Acid Conversion

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Trimming vine shoot samples were treated with water under selected operational conditions (autohydrolysis reaction) to obtain a liquid phase containing hemicellulose-decomposition products. In a further acid-catalyzed step (posthydrolysis reaction), xylooligosaccharides were converted into single sugars for the biotechnological production of lactic acid using Lactobacillus pentosus. A wide range of temperatures, reaction times, and acid concentrations were tested during the autohydrolysis–posthydrolysis process to investigate their influence on hemicellulose solubilization and reaction products. The maximum concentration of hemicellulosic sugars was achieved using autohydrolysis at 210 °C followed by posthydrolysis with 1% H2SO4 during 2 h. Data from autohydrolysis–posthydrolysis were compared with the results obtained at the optima conditions assayed for prehydrolysis (3% H2SO4 at 130 °C during 15 min) based on previous works. Prehydrolysis extracted more hemicellulosic sugars from trimming vine shoots; however, the protein content in the hydrolysates from autohydrolysis–posthydrolysis was higher. The harsher conditions assayed during the autohydrolysis process and the higher content of protein after this treatment could induce Maillard reactions decreasing consequently the concentration of hemicellulosic sugars in the hydrolysates. Therefore, despite the several advantages of autohydrolysis (less equipment caused by the absence of mineral acid, less generation of neutralized sludges, and low cost of reagents) the poor results obtained in this work with no detoxified hydrolysates (Q P = 0.36 g/L h, Q S = 0.79 g/L h, Y P/S = 0.45 g/g, Y P/Sth = 61.5 %) or charcoal-treated hydrolysates (Q P = 0.76 g/L h, Q S = 1.47 g/L h, Y P/S = 0.52 g/g, Y P/Sth = 71.5 %) suggest that prehydrolysis of trimming vine shoots with diluted H2SO4 is more attractive than autohydrolysis-posthydrolysis for obtaining lactic acid through fermentation of hemicellulosic sugars with L. pentosus. Besides the higher hemicellulosic sugars concentration achieved when using the prehydrolysis technology, no detoxification steps are required to produce efficiently lactic acid (Q P = 1.14 g/L h; Q S = 1.64 g/L h; Y P/S = 0.70 g/g; Y P/Sth = 92.6 %), even when vinification lees are used as nutrients (Q P = 0.89 g/L h; Q S = 1.54 g/L h; Y P/S = 0.58 g/g; Y P/Sth = 76.1 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kjallstrand, J., Ramnas, O., & Peterson, G. (1998). Journal of Chromatography A, 824(2), 205–210.

    Article  CAS  Google Scholar 

  2. Tsutsui, T., Hayashi, N., Maizumi, H., Huff, J., & Barrett, J. C. (1997). Mutation Research, 373(1), 113–123.

    CAS  Google Scholar 

  3. Wen-Tien, T., & Jih-Ming, C. (2006). Chemosphere, 63, 22–30.

    Article  CAS  Google Scholar 

  4. Domínguez, J. M., Cao, N. J., Gong, C. S., & Tsao, G. T. (1997). Bioresource Technology, 61, 85–90.

    Article  Google Scholar 

  5. Moldes, A. B., Alonso, J. L., & Parajó, J. C. (1999). Journal of bioscience and bioengineering, 87, 787–792.

    Article  CAS  Google Scholar 

  6. Cruz, J. M., Domínguez, J. M., Domínguez, H., & Parajó, J. C. (2000). Food Biotechnology, 14, 79–97.

    Article  CAS  Google Scholar 

  7. Moldes, A. B., Alonso, J. L., & Parajó, J. C. (2001). Journal of Chemical Technology and Biotechnology, 76(3), 279–284.

    Article  CAS  Google Scholar 

  8. Moldes, A. B., Cruz, J. M., Domínguez, J. M., & Parajó, J. C. (2002). Agricultural and Food Science in Finland, 11(1), 51–58.

    CAS  Google Scholar 

  9. Rivas, B., Moldes, A. B., Domínguez, J, M., & Parajó, J. C. (2004). Enzyme and Microbial Technology, 34(7), 627–634.

    Article  CAS  Google Scholar 

  10. Garrote, G., Domínguez, H., & Parajó, J. C. (2001). Bioresource Technology, 79(2), 155–164.

    Article  CAS  Google Scholar 

  11. Rivas, B., Domínguez, J. M., Domínguez, H., & Parajó, J. C. (2002). Enzyme and Microbial Technology, 31, 431–438.

    Article  CAS  Google Scholar 

  12. Garrote, G., Cruz, J. M., Domínguez, H., & Parajó, J. C. (2003). Journal of Chemical Technology and Biotechnology, 78, 392–398.

    Article  CAS  Google Scholar 

  13. Carvalheiro, F., Esteves, M. P., Parajó, J. C., Pereira, H., & Girio, F. M. (2004). Bioresource Technology, 91, 93–100.

    Article  CAS  Google Scholar 

  14. Bustos, G., Ramírez, J. A., Garrote, G., & Vázquez, M. (2003). Applied Biochemistry and Biotechnology, 104, 51–68.

    Article  CAS  Google Scholar 

  15. Bustos, G., Cruz, J. M., Moldes, A. B., & Domínguez, J. M. (2004). Journal of the Science of Food and Agriculture, 84, 2105–2112.

    Article  CAS  Google Scholar 

  16. Herrera, A., Téllez-Luis, S. J., González Cabriales, J. J., Ramírez, J. A., & Vázquez, M. (2004). Journal of Food Engineering, 63(1), 103–109.

    Article  Google Scholar 

  17. Rodriguez-Chong, A., Ramirez, J. A., Garrote, G., & Vazquez, M. (2004). Journal of Food Engineering, 61(2), 143–152.

    Article  Google Scholar 

  18. Gámez, S., González-Cabriales, J. J., Ramírez, J. A., Garrote, G., & Vázquez, M. (2006). Journal of Food Engineering, 74(1), 78–88.

    Article  CAS  Google Scholar 

  19. Lamptey, J. C., Robinson, C. W., & Moo-Young, M. (1985). Biotechnology Letters, 7(7), 531–536.

    Article  CAS  Google Scholar 

  20. Mercier, P., Yerushalmi, L., Rouleau, D., & Dochain, D. (1992). Journal of Chemical Technology and Biotechnology, 55, 111–121.

    CAS  Google Scholar 

  21. Miller, T. L., & Churchill, B. W. (Ed.). (1986). Washington D.C.: American Society for Microbiology.

  22. Bustos, G., Cruz, J. M., Moldes, A. B., & Domínguez, J. M. (2004). Journal of Agricultural and Food Chemistry, 52(16), 5233–5239.

    Article  CAS  Google Scholar 

  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 139(1), 265–275.

    Google Scholar 

  24. Rufián-Henares, J. A., & Morales, F. J. (2007). Journal of Food Quality, 30, 160–168.

    Article  Google Scholar 

  25. Martins, S. I. F., & Van Boekel, M. A. J. S. (2003). Food Chemistry, 83, 135–142.

    Article  CAS  Google Scholar 

  26. Jemmali, M. J. (1969). Journal of Applied Bacteriology, 32, 151–154.

    CAS  Google Scholar 

  27. Stecchini, M. L., Giavedoni, P., Sarais, I., & Lerici, C. (1993). Italian Journal of Food Sciences, 5, 51–54.

    Google Scholar 

  28. Einarsson, H., Snygg, B. G., & Eriksson, C. (1983). Journal of Agricultural and Food Chemistry, 31, 1043–1047.

    Article  CAS  Google Scholar 

  29. Garde, A., Jonsson, G., Schmidt, A. S., & Ahring, B. K. (2002). Bioresource Technology, 81(3), 217–223.

    Article  CAS  Google Scholar 

  30. Bustos, G., Cruz, J. M., Moldes, A. B., & Domínguez, J. M. (2004). Journal of Agricultural and Food Chemistry, 52(4), 801–808.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the following institutions for the financial support of this work: Spanish Ministry of Science and Technology (MCYT) (project PPQ2003-02802, which has partial financial support from the FEDER founds of the European Union), Xunta de Galicia (PGIDIT04PXIC38302PN and PGIDIT05BTF38301PR), and to the “Ramón y Cajal” and “Isidro Parga Pondal” programs financed by the MCYT and Xunta de Galicia of Spain, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Domínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moldes, A.B., Bustos, G., Torrado, A. et al. Comparison between Different Hydrolysis Processes of Vine-Trimming Waste to Obtain Hemicellulosic Sugars for Further Lactic Acid Conversion. Appl Biochem Biotechnol 143, 244–256 (2007). https://doi.org/10.1007/s12010-007-8021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8021-2

Keywords

Navigation