Skip to main content
Log in

Enzymatic Hydrolysis of Penicillin for 6-APA Production in Three-Liquid-Phase System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A dodecane/thermosensitive polymer/water three-liquid-phase system was introduced for enzymatic hydrolysis of penicillin G (Pen G) for 6-aminopenicillanic acid (6-APA). The enzyme was covalently attached to the terminal of PEO–PPO–PEO polymer (L63), which would be transferred into a polymer coacervate phase at high temperature above its “cloud point”. 6-APA was primarily resided in the aqueous phase due to its zwitterionic nature. More than 70% phenylacetic acid (PAA) was transferred into the organic phase using trioctylmethylammonium hydroxide and trihexyl-(tetradecyl)phosphonium bis 2,4,4-trimethylpentylphosphinate ionic liquids (Cyphos IL-104) mixture at pH 5.5, while most of Pen G resided in water. As a result, high operational pH was permitted in three-liquid-phase system, which leads to higher enzymatic activity (120 IU at 40°C) and stability (enzymatic half-time up to 55 h at 60°C) in comparison with the value in butyl acetate/water two-phase system. On the other hand, two products in three-liquid-phase system might be automatically separated from the enzyme sphere into different phases at the same time, which facilitated the reaction equilibrium towards the product’s side with 6-APA productivity of 80% at 42°C, pH 5.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barenschee, T., Scheper, T., & Schügerl., K. (1992). Journal of biotechnology, 26, 143–154.

    Article  CAS  Google Scholar 

  2. Van de Sandt, E. J. A. X., & van de Vroom, E. (2000). Chimica Oggi, 18, 72–75.

    Google Scholar 

  3. Arroyo, M., De la Mata, I., Acebal, C., & Castillon, M. P. (2003). Applied Microbiology and Biotechnology, 60, 507–514.

    CAS  Google Scholar 

  4. Abian, O., Mateo, C., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuentz, G. (2003). Biotechnology Progress, 19, 1639–1642.

    Article  CAS  Google Scholar 

  5. Bora, M. M., Ghosh, A. C., Dutta, N. N., & Mathur, R. K. (1997). Canadian Journal of Chemical Engineering, 75, 520–526.

    Article  CAS  Google Scholar 

  6. Shewale, J. G., & Sivaraman, H. (1989). Process Biochemistry, 8, 146–152.

    Google Scholar 

  7. Harrison, F. G., & Gibson, E. D. (1984). Process Biochemistry, 19, 33–36.

    Google Scholar 

  8. Ospina, S. S. (1992). Journal of Chemical Technology and Biotechnology, 53, 205–214.

    CAS  Google Scholar 

  9. Gaidhani, H. K., Tolani, V. L., Pangarkar, K. V., & Pangarkar, V. G. (2002). Chemical Engineering Science, 57, 1985–1992.

    Article  CAS  Google Scholar 

  10. Rindfleisch, D., Syska, B., Lazarova, Z., & Schügerl, K. (1997). Process Biochemistry, 32, 605–616.

    Article  CAS  Google Scholar 

  11. Wyss, A., Seitert, H., Von Stockar, U., & Marison, I. W. (2005). Biotechnology and Bioengineering, 91, 227–236.

    Article  CAS  Google Scholar 

  12. Wang, Z. L., Xu, J. H., Wang, L., Bao, D., Qi, H. S. (2006). Industrial & Engineering Chemistry Research, 45, 8049–8055.

    Article  CAS  Google Scholar 

  13. Liao, L. C., Ho, C. S., & Wu, W. T. (1999). Process Biochemistry, 34, 417–420.

    Article  CAS  Google Scholar 

  14. Diender, M. B., Straathof, A. J. J., van der Does, T., Ras, C., & Heijnen, J. J. (2002). Biotechnology and Bioengineering, 78, 395–402.

    Article  CAS  Google Scholar 

  15. Ferreira, J. S., Straathof, A. J. J., Tranco, T. T., Van der Wielen, L. A. M. (2004). Journal of Molecular Catalysis. B, 27, 29–35.

    Article  CAS  Google Scholar 

  16. Mwangi, S. M. (1994). PhD. Thesis, University of Manchester, UK.

  17. Rolinson, G. N., & Geddes, A. M. (2007). International Journal of Antimicrobial Agents, 29, 3–8.

    Article  CAS  Google Scholar 

  18. Hollander, J. L., Zomerdijk, M., Straathof, J. J., & vander Wielen, L. A. M. (2002). Chemical Engineering Science, 57, 15–22.

    Article  Google Scholar 

  19. Schroen, C. G. P. H., Nierstraze, V. A., Kroon, P. J., Bosma, R., Janssen, A. E. M., Beeftink, H. H., & Tramper, J. (1999). Enzyme and Microbial Technology, 24, 498–507.

    Article  CAS  Google Scholar 

  20. Reschke, M., & Schügerl, K. (1997). Chemical Engineering Journal, 28, B1–B9.

    Google Scholar 

  21. Illanes, A., & Fajardo, A. (2001). Journal of Molecular Catalysis. B, Enzymatic, 11, 587–593.

    Article  CAS  Google Scholar 

  22. Hernandez-Justiz, O., Fernandez-Lafuente, R., Terreni, M., & Guisan, J. M. (1998). Biotechnology and Bioengineering, 59, 73–84.

    Article  CAS  Google Scholar 

  23. Michels, B., Waton, G., & Zana, R. (1997). Langmuir, 13, 3111–3118.

    Article  CAS  Google Scholar 

  24. Kurganov, B. I., Topchieva, I. N., & Efremova, N. V. (1997). Bioconjugate Chemistry, 8, 637–642.

    Article  CAS  Google Scholar 

  25. Shimoboji, T., Larenas, E., Fowler, T., Hoffman, A. S., & Stayton, P. S. (2003). Bioconjugate Chemistry, 14, 517–525.

    Article  CAS  Google Scholar 

  26. Chen, G. H., & Hoffman, A. S. (1993). Bioconjugate Chemistry, 4, 509–514.

    Article  CAS  Google Scholar 

  27. Miesic, I., Schügerl, K., Hasler, A., & Szymanowski, J. (1996). Journal of Radioanalytical and Nuclear Chemistry, 208, 133–144.

    Article  Google Scholar 

  28. Matsumoto, M., Ohtani, T., & Kondo, K. (2007). Journal of Membrane Science, 289, 92–96.

    Article  CAS  Google Scholar 

  29. Marták, J., & Schlosser, Š. (2006). Sep. Sci. Tech. DOI 10.1016/j.seppur.2006.09.013.

  30. Shen, S. F, Chang, Z. D., Sun, X. H., & Liu, H. Z. (2006). Process Biochemistry, 41, 571–574.

    Article  CAS  Google Scholar 

  31. Lee, J. M, Shin, H. J., & Lim, K. H. (2003). Journal of Colloid and Interface Science, 257, 344–356.

    Article  CAS  Google Scholar 

  32. Hu, Z. S., Hu, X. P., Cui, W., Wang, D. B., & Fu, X. (1999). Colloids and Surfaces, 155, 383–393.

    Article  CAS  Google Scholar 

  33. Done, S. H., Brannigan, J. A., Moody, P. C. E., & Hubbard, R. E. (1998). Journal of Molecular Biology, 284, 463–475.

    Article  CAS  Google Scholar 

  34. Montes, T., Grazu, V., López-Gallego, F., Hermoso, J. A., Guisán, J. M., & Fernández-Lafuente, R. (2006). Biomacromolecules, 7, 3052–3058

    Article  CAS  Google Scholar 

  35. Bradford, M. (1976). Analytical Chemistry, 72, 248–254.

    CAS  Google Scholar 

  36. Liu, J., Cong, W., & Ouyang, F. (2001). Reactive & Functional Polymers, 48, 75–84.

    Article  CAS  Google Scholar 

  37. Gao, B. J., Wang, X. P., & Shen, Y. L. (2006). Biochemical Engineering Journal, 28, 140–147.

    Article  CAS  Google Scholar 

  38. Walsh, C. (1979). W. H. Freeman, San Francisco.

  39. Lee, S. B., & Rui, D. Y. (1982). Enzyme and Microbial Technology, 4, 35–38.

    Article  CAS  Google Scholar 

  40. Dimitrova, T. D., Leal-Calderon, F., Gurkov, T. D., & Campbell, B. (2004). Advances in Colloid and Interface Science, 108–109, 73–86.

    Article  CAS  Google Scholar 

  41. Illanes, A., Altamirano, C., & Zuñiga, M. E. (1996). Biotechnology and Bioengineering, 50, 609–616.

    Article  CAS  Google Scholar 

  42. Stayton, P. S., Shimoboji, T., Long, C., Chilkoti, A., Chen, G. H., Harris, J. M., et al. (1995). Nature, 378, 472–474.

    Article  CAS  Google Scholar 

  43. Yang, Z. Domach, M., Auger, R., Yang, F. X., & Russell, A. J. (1996). Enzyme and Microbial Technology, 18, 82–88.

    Article  CAS  Google Scholar 

  44. Ivanov, A. E, Edink, E., Kumar, A., Galaev, I. Y., Arendsen, A. F., Bruggink, A., et al. (2003). Biotechnology Progress, 19, 1167–1175.

    Article  CAS  Google Scholar 

  45. Gil, E. S., & Hudson, S. M. (2004). Progress in Polymer Science, 29, 1173–1222.

    Article  CAS  Google Scholar 

  46. Mislovičová, D., Masárová, J., Bučko, M., & Gemeiner, P. (2006). Enzyme and Microbial Technology, 39, 579–585.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by Innovation Research Group (No.20221603), National Nature Science Foundation of China (No.20490200) and the Fundamental Foundation of China (No.90610007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hansong Xia or Huizhou Liu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

ESM 1

(DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Xia, H., Guo, C. et al. Enzymatic Hydrolysis of Penicillin for 6-APA Production in Three-Liquid-Phase System. Appl Biochem Biotechnol 144, 145–159 (2008). https://doi.org/10.1007/s12010-007-8018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8018-x

Keywords

Navigation