Skip to main content
Log in

Importance of C-Terminal Region for Thermostability of GH11 Xylanase from Streptomyces lividans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The amino acid sequences of xylanase B (XlnB) and xylanase C (XlnC) from Streptomyces lividans show significant homology. However, the temperature optima and stabilities of the two enzymes are quite different. XlnB exhibits an optimum temperature of 40 °C and retains 50% of its maximum activity at 43 °C, whereas the corresponding values for XlnC are 60 and 70 °C. To analyze these properties further, as well as to study the effect of the exchange of homologous segments in the C-terminal region, four chimeras designated as BSC, BFC, CSB, and CFB were constructed by substituting segments from the C-terminal homologous region of XlnB gene with that of XlnC and in turn substituting XlnC gene with that of XlnB. The purified chimeric enzymes were characterized with respect to pH/temperature activity, stability, and kinetic parameters. Most of enzymatic properties of chimeras were admixtures of those of the two parents. The chimeric enzymes were optimally active at 45–55 °C and pH 7.0. Both K m and k cat values of chimeric enzymes for p-nitrophenyl-β-d-cellobioside were admixtures of both parental enzymes, except that the k cat value of chimeric BFC (2.79 s−1) was higher than that of parental XlnC (1.99 s−1). Notably, thermal stability of chimeric BSC and BFC was increased by 25 and 13 °C separately, as compared to one of parental XlnB, whereas the thermal stability of chimeric CSB and CFB was decreased by 23 and 21 °C, respectively, as compared to another parental XlnC. These results suggest that homologous C-terminal region in S. lividans GH11 xylanase appears to play an important role in determining enzyme characteristics, and exchanging of different segments of gene in this region might significantly alter or improve the enzymatic properties such as thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GH:

glycoside hydrolase

XlnB:

Streptomyces lividans xylanase B

XlnC:

Streptomyces lividans xylanase C

PNP-G2 :

p-nitrophenyl-β-d-cellobioside

RBB-xylan:

4-O-methyl-d-glucurono-d-xylan-Remazol Brilliant Blue R

References

  1. Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C. Jr., & Warren, R. A. J. (1991). Microbiological Reviews, 55, 303–315.

    CAS  Google Scholar 

  2. Henrissat, B., & Bairoch, A. (1993). Biochemical Journal, 293, 781–788.

    CAS  Google Scholar 

  3. Polizeli, M. L., Rizzattim, A. C., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Applied Microbiology and Biotechnology, 67, 577–591.

    Article  CAS  Google Scholar 

  4. Shareck, F., Roy, C., Yaguchi, M., Morosoli, R., & Kluepfel, D. (1991). Gene, 107, 75–82.

    Article  CAS  Google Scholar 

  5. Biely, P., Kluepfel, D., Morosoli, R., & Shareck, F. (1993). Biochimica et Biophysica Acta, 1162, 246–254.

    CAS  Google Scholar 

  6. Sa-Pereira, P., Paveia, H., Costa-Ferreira, M., & Aires-Barros, M. (2003). Molecular Biotechnology, 24, 257–281.

    Article  CAS  Google Scholar 

  7. Giannotta, F., Georis, J., Rigali, S., Virolle, M. J., & Dusart, J. (2003). Molecular Genetics and Genomics, 270, 337–346.

    Article  CAS  Google Scholar 

  8. Tahir, T. A., Berrin, J. G., Flatman, R., Roussel, A., Roepstorff, P., Williamson, G., et al. (2002). Journal of Biological Chemistry, 277, 44035–44043.

    Article  CAS  Google Scholar 

  9. van der Veen, B. A., Potocki-Veronese, G., Albenne, C., Joucla, G., Monsan, P., & Remaud-Simeon, M. (2004). FEBS Letters, 560, 91–97.

    Article  CAS  Google Scholar 

  10. Rowe, L. A., Geddie, M. L., Alexander, O. B., & Matsumura, I. (2003). Journal of Molecular Biology, 332, 851–860.

    Article  CAS  Google Scholar 

  11. Kim, Y. W., Choi, J. H., Kim, J. W., Park, C., Kim, J. W., Cha, H., et al. (2003). Applied and Environmental Microbiology, 69, 4866–4874.

    Article  CAS  Google Scholar 

  12. Wang, J. D., Herman, C., Tipton, K. A., Gross, C. A., & Weissman, J. S. (2002). Cell, 111, 1027–1039.

    Article  CAS  Google Scholar 

  13. Biely, P., Mislovicova, D., & Toman, R. (1988). Method in Enzymology, 160, 536–541.

    Article  CAS  Google Scholar 

  14. Lawson, S. L., Wakarchuk, W. W., & Withers, S. G. (1996). Biochemistry, 35, 10110–10118.

    Article  CAS  Google Scholar 

  15. Somogyi, M. (1952). Journal of Biological Chemistry, 195, 19–23

    CAS  Google Scholar 

  16. Singh, A., & Hayashi, K. (1995). Journal of Biological Chemistry, 270, 21928–21933.

    Article  CAS  Google Scholar 

  17. Ahsan, M. M., Kaneko, S., Wang, Q., Yura, K., Go, M., & Hayash, K. (2001). Enzyme and Microbial Technology, 28, 8–15.

    Article  CAS  Google Scholar 

  18. Singh, A., Hayashi, K., Hoa, T. T., Kashiwagi, Y., & Tokuyasu, K. (1995). Biochemical Journal, 305, 715–719.

    CAS  Google Scholar 

  19. Nosoh, Y., & Sekiguchi, T. (1990). Trends Biotechnology, 8, 16–20.

    Article  CAS  Google Scholar 

  20. Garnier, J., Osguthorpe, D. J., & Robson, B. (1978). Journal of Molecular Biology, 120, 97–120.

    Article  CAS  Google Scholar 

  21. Henrissat, B., Raimbound, E., Tran, V., & Mornon, J. P. (1990). Computer Applications in the Biosciences, 6, 3–5.

    CAS  Google Scholar 

  22. Gaboriaud, C., Bissery, V., Benchetrit, T., & Mornon, J. P. (1987). FEBS Letters, 224, 149–155.

    Article  CAS  Google Scholar 

  23. Numata, K., Muro, M., Akutu, N., Nosoh, Y., Yamagishi, A., & Oshima, T. (1995). Protein Engineering, 8, 39–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Ying Li for the assistance with the DNA sequence analysis and chimeric enzymes construction. This work was sponsored by Shanghai Pujiang Program to Qin Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Xia, T. Importance of C-Terminal Region for Thermostability of GH11 Xylanase from Streptomyces lividans . Appl Biochem Biotechnol 144, 273–282 (2008). https://doi.org/10.1007/s12010-007-8016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8016-z

Keywords

Navigation