Applied Biochemistry and Biotechnology

, Volume 149, Issue 1, pp 45–51 | Cite as

Overproduction of Laccase and Pectinase by Microbial Associations in Solid Substrate Fermentation

  • Ivanka Stoilova
  • Albert KrastanovEmail author


The growth and the enzymatic production of two microbial fungal associations were studied: Aspergillus niger and Fusarium moniliforme and Trametes versicolor and Aspergillus niger. The synergistic interrelations between the species of the first mixed culture increased the biosynthesis of α-amylase and pectinase. T. versicolor and A. niger proved to be compatible partners in the overproduction of the enzyme laccase, whose synthesis surpassed 8.4 times the enzymatic level in the monoculture, with both of the mixed microbial populations cocultivation facilitating the amplified synthesis of enzymes rather than their growth acceleration. A further proof of the presence of synergism established by the cultures was the enzyme volumetric productivities in both of the mixed microbial cultures, which increased parallel to the rise in the combined biomass synthesis. The competent selection of compatible partners can adjust the desired enzymatic levels and compositions in mixed fungal systems aimed at a number of specified designations. Thus, a very high level of laccase production (97,600 IU/g dry weight) was achieved. The chosen fungal strains produce a variety of different enzymes, but first microbial association produces mainly amylase and pectinase, necessary for their growth, and second association produces mainly laccase and pectinase.


Solid substrate fermentation Laccase Pectinase Mixed fungal culture 


  1. 1.
    Salmon, I., & Bull, A. T. (1984). In Klug, M. J. & Reddy, C.A. (Eds.), Current perspectives in microbial ecology (pp. 656–662). Washington, DC: ASM.Google Scholar
  2. 2.
    Castillo, M. R., Gutierrez-Correa, M., Linden, J. C., & Tengerdy, R. P. (1994). Biotechnology Letters, 16(9), 967–972.CrossRefGoogle Scholar
  3. 3.
    Dueñas, R., Tengerdy, R. P., & Gutierrez-Correa, M. (1995). World Journal of Microbiology & Biotechnology, 11, 333–337.CrossRefGoogle Scholar
  4. 4.
    Gutierrez-Correa, M., & Tengerdy, R. P. (1997). Biotechnology Letters, 19(7), 665–667.CrossRefGoogle Scholar
  5. 5.
    Gutierrez-Correa, M., Portal, L., Moreno, P., & Tengerdy, R. P. (1998). Bioresource Technology, 68(2), 173–178.CrossRefGoogle Scholar
  6. 6.
    Abate, C. M., Castro, G. R., Siñeriz, F., & Callieri, D. A. S. (1999). Biotechnology Letters, 21, 249–252.CrossRefGoogle Scholar
  7. 7.
    Öngen-Baysal, G., & Sukan, S. S. (1996). Biotechnology Letters, 18(12), 1431–1434.CrossRefGoogle Scholar
  8. 8.
    Ramachandran, S., Roopesh, K., Nampoothiri, M., Szakacs, G., & Pandey, A. (2005). Process Biochemistry, 40(5), 1749–1754.CrossRefGoogle Scholar
  9. 9.
    Heinzkill, M., Bech, L., Halkier, T., Schneider, P., & Anke, T. (1998). Applied and Environmental Microbiology, 64, 1601–1606.Google Scholar
  10. 10.
    Xavier, A. M. R. B., Evtuguin, D. V., Ferreira, R. M. P., & Amado, F. L. (2001) Proceedings 8th International Conference in Biotechnology, Helsinki, Finland, pp. 102–106.Google Scholar
  11. 11.
    Lee, I.-Y., Jung, K.-H., Lee, C.-H., & Park T.-H. (1999). Biotechnology Letters, 21, 965–968.CrossRefGoogle Scholar
  12. 12.
    Lu, S. X. F., Jones, C. L., & Lonergan, G. T. (1996). Proceedings of the 10th International Biotechnology Symposium, Sydney, Australia, pp. 223–230.Google Scholar
  13. 13.
    Palmieri, G., Giardina, P., Bianco, A., Capasso, A., & Sannia, G. (1997). Journal of Biological Chemistry, 272, 31301–31307.CrossRefGoogle Scholar
  14. 14.
    Sakurai, Y., Lee, T. H., & Siota, H. (1976). Agricultural and Biological Chemistry, 24, 619–624.Google Scholar
  15. 15.
    Mandels, M., Sternberd, D., & Andreoti, R. E. (1975). In Bailey, M., Enari, T.M., & Linko, M. (Eds.), Proceedings of the Symposium on Enzymatic Hydrolysis of Cellulose (pp. 81–109). Helsinki: SITRA.Google Scholar
  16. 16.
    Riou, C., Salmon, J. M., Vallier, M. J., Günata, Z., & Barre, P. (1998). Applied and Environmental Microbiology, 64(10), 3607–3614.Google Scholar
  17. 17.
    Ilieva, S., Atev, A., Pochekanska, A., Mincheva, D., & Panova, N. (1995). Annuaire de l’Universite de Sofia, Bulgaria, 88(4), 63–68.Google Scholar
  18. 18.
    Pantschev, C. H., Klenz, G., & Hafner, B. (1981). Lebensmittelindustrie, 28(2), 71–74.Google Scholar
  19. 19.
    Kurzina, L. V., Evtichov, P. P., & Polunina, A. P. (1973). Applied Biochemistry and Microbiology, 4, 621–624 (in Russian).Google Scholar
  20. 20.
    Rutlof, H., Friese, R., Taufel, A., & Taufel, K. (1968). Nahrwng, 12(1), 53–56.CrossRefGoogle Scholar
  21. 21.
    Marbach, I., Harel, E., & Mayer, A. M. (1985). Phytochemistry, 24, 2559–2561.CrossRefGoogle Scholar
  22. 22.
    Roboz, E., Barrat, R., & Tatum, E. (1952). Journal of Biological Chemistry, 2, 195–200.Google Scholar
  23. 23.
    Linkens, H. F., & Jackson, J. F. (Eds.) (1996). Modern methods of plant analysis, Vol 17. Berlin: Springer, pp. 165–177.Google Scholar
  24. 24.
    Rose Jocelyn, K. C. (2003). The plant cell wall. Blackwell Publishing, pp. 14–24.Google Scholar
  25. 25.
    Gutierrez-Correa, M., & Tengerdy, R. P. (1998). Biotechnology Letters, 20(1), 45–47.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of BiotechnologyUniversity of Food TechnologiesPlovdivBulgaria

Personalised recommendations