Skip to main content

Advertisement

Log in

Calreticulin Transacetylase Mediates the Acetylation of Nitric Oxide Synthase by Polyphenolic Acetate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Our earlier investigations identified acetoxy drug: protein transacetylase (TAase), a unique enzyme in the endoplasmic reticulum (ER) catalyzing the transfer of acetyl groups from polyphenolic acetates (PA) to certain functional proteins. Recently we have established the identity of TAase with ER protein calreticulin (CR) and subsequently transacetylase function of CR was termed calreticulin transacetylase (CRTAase). CRTAase was purified and characterized from human placenta. CRTAase catalyzed the acetylation of a receptor protein nNOS, by a model PA 7, 8-diacetoxy-4-methylcoumarin (DAMC), which was visually confirmed by using antiacetyl lysine. The aim of this report was to provide tacit proof by providing mass spectrometry evidence for CRTAase catalyzed acetylation of purified nNOS by DAMC. For this purpose, purified nNOS was incubated with DAMC and CRTAase, the modified nNOS was analyzed by nanoscale LC-MS/MS, which recorded 11 distinct peptides with a significant score as acetylated on lysine residues. The distribution was in order: lysines-24, -33, -38, -131, and -229 of the PDZ domain, Lys-245 of the oxygenase domain, Lys-754 and -856 of FMN binding domain, Lys-989 of connecting domain and Lys-1300, -1321, and -1371 of the NADPH-binding domain were acetylated. The results documented in this paper highlighted for the first time modification of nNOS by way of acetylation. Our earlier work recorded the profound activation of platelet NADPH cytochrome P-450 reductase and the acetylation of the reductase protein by DAMC, which also remarkably enhanced intracellular levels of nitric oxide. The results reported here coupled with the aforementioned previous observations strongly implicate the possible role of the acetylation of the reductase domain of nitric oxide synthase (NOS) in the NOS activation. In addition, the acetylation of nNOS can be expected to potentiate the interaction with CR, eventually leading to the augmented catalytic activity of NOS and expression of the related biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alderton, W. K., Cooper, C. E., & Knowles, R. G. (2001). Biochemical Journal, 357, 593–615.

    Article  CAS  Google Scholar 

  2. Chakravarti, D. J. (1935). Indian. Chemical Society, 12, 536.

    CAS  Google Scholar 

  3. Knowels, R. G, & Moncada, S. (1999). Biochemical Journal, 298, 249–258.

    Google Scholar 

  4. Khurana, P., Kumari, R., Vohra, P., Kumar, A., Seema, G. G., Raj, H. G., et al. (2006). Bioorganic & Medical Chemistry, 14, 575–583.

    Article  CAS  Google Scholar 

  5. Kohli, E., Gaspari, M., Raj, H. G., Parmar, V. S., Greef, J. V., Gupta, G., et al. (2002). Federation of European Biochemical Societies Letters, 530, 139–142.

    CAS  Google Scholar 

  6. Kohli, E., Gaspari, M., Raj, H. G., Parmar, V. S., Sharma, S. K., Greef, J. V., et al. (2004). Biochimica et Biophysica Acta, 1698, 55–66.

    CAS  Google Scholar 

  7. Li, Q., Xiao, H., & Isobe, K. (2002). Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 57, 93–98.

    Google Scholar 

  8. Marietta, M. A. (1994). Cell, 78, 924–930.

    Google Scholar 

  9. Michalak, M., Corbett, E. F., Mesaeli, N., Nakamura, K., & Opas, M. (1999). Biochemical Journal, 344, 281–292.

    Article  CAS  Google Scholar 

  10. Michel, T. (1999). Brazilian Journal of Medical and Biological Research, 12333–12340.

  11. Nadler, S. G., & Strobel, H. W. (1988). Archives of Biochemistry and Biophysics, 261, 418–429.

    Article  CAS  Google Scholar 

  12. Parmar, V. S., Bisht, K. S., Jain, R., Singh, S., Sharma, S. K., Gupta, S., et al. (1996). Indian Journal of Chemistry, 35B, 220–232.

    CAS  Google Scholar 

  13. Patel, J. M., Li, Y. D., Zhang, J., Gelband, C. H., Raizada, M. K., & Block, E. R. (1999). American Journal of Physiology. Lung Cellular and Molecular Physiology, 277, 794–801.

    Google Scholar 

  14. Raj, H. G., Kumari, R., Seema, Gupta, G. Kumar, R., Saluja, D., Muralidhar, K. M., et al. (2006). Pure and Applied Chemistry, 78, 985–992.

    Article  CAS  Google Scholar 

  15. Raj, H. G., Kohli, E., Goswami, R., Goel, S., Rastogi, R. C., Jain, S. C., et al. (2001). Bioorganic & Medicinal Chemistry, 9, 1085–1089.

    Article  CAS  Google Scholar 

  16. Raj, H. G., Kohli, E., Tyagi, Y. K., Parmar, V. S., & Olsen, C. E. (2000). FASEB Journal, 14A, 1445.

    Google Scholar 

  17. Raj, H. G., Parmar, V. S., Jain, S. C., Kohli, E., Goel, S., Tyagi, Y. K., et al. (1999). Bioorganic & Medicinal Chemistry, 7, 1707–1712.

    Google Scholar 

  18. Raj, H. G., Singh, B. K., Kohli, E., Dwarkanath, B. S., Jain, S. C., Rastogi, R. C., et al. (2005). Pure and Applied Chemistry, 77, 245–250.

    Article  CAS  Google Scholar 

  19. Roman, L. J., Martasek, P., & Masters, B. S. S. (2002). Chemical Reviews, 102, 1179–1189.

    Article  CAS  Google Scholar 

  20. Seema, K. R., Gupta, G., Saluja, D., Kumar, A., Goel, S., Tyagi, Y. K., et al. (2007). Cell Biochemistry and Biophysics, 47, 53–64.

    Article  CAS  Google Scholar 

  21. Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996) Analytical Chemistry, 68, 850.

    Article  CAS  Google Scholar 

  22. Singh, I., Kohli, E., Raj, H. G., Gyanda, K., Jain, S. K., Tyagi, Y. K., et al. (2002), Bioorganic & Medicinal Chemistry, 10, 4103–4111.

    Article  CAS  Google Scholar 

  23. Starai, V. J., Colic, I., Cole, R. N., Boeke, J. D., & Escalante-Semerena, J. C. (2002). Science, 298, 2390–2392.

    Article  CAS  Google Scholar 

  24. Yang, X. J. (2004). Nucleic Acids Research, 32, 959–976.

    Article  CAS  Google Scholar 

  25. Zhang, J., Martasek, P., Paschaske, R., Shen, T., Masters, B. S. S., & Kim, J. J. (2001). Journal of Biological Chemistry, 276, 37506–37513.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial assistance of the Department of Biotechnology Govt. of India is gratefully acknowledged. The encouragement from Prof. B.S.S. Masters is highly acknowledged. We also thank Maternity ward of Gauri Nursing Home, Malka Ganj, Delhi for supply of human placenta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanumantharao G. Raj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, S., Gaspari, M., Raj, H.G. et al. Calreticulin Transacetylase Mediates the Acetylation of Nitric Oxide Synthase by Polyphenolic Acetate. Appl Biochem Biotechnol 144, 37–45 (2008). https://doi.org/10.1007/s12010-007-8005-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8005-2

Keywords

Navigation