Skip to main content
Log in

Ultrastructural and Intracellular Chemical Changes of a Novel Halophilic Strain V430 of Staphylococcus saprophyticus under CaCl2 Stress

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Observation of the ultrastructural and intracellular chemical changes of CaCl2-tolerant strains is important both for understanding their adaptation mechanism under high salt stress and for providing theoretical basis of their application in treating high-CaCl2 wastewaters. A novel strain V 430 isolated by us has been successfully used to decrease the chemical oxygen demand (COD) concentration of diosgenin wastewater from 20 g l−1 to less than 0.5 g l−1. For this study, strain V430 was incubated in culture media of different CaCl2 concentrations (up to 9.0%). Strain V430 cells incubated in media of high CaCl2 concentration excreted extracellular substances and accumulated intracellular Ca2+ and K+ and free amino acids. The levels of intracellular cations and free amino acids increased with increase in CaCl2 concentration of the medium. The increase in total free amino acids was mostly due to accumulation of glutamic acid. The strain cells under 9.0% CaCl2 stress took up K+ in a short time, while accumulation of Ca2+ proceeded over the whole growth process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bao, J., Liu, H., & Wang, Y. (2005). A New Model of Granular Sludge Formation in a UASB Reactor Treating Diosgenin Wastewater. In: Proceedings of the 1st International Conference on Pollution Control and Resource Reuse for a Better Tomorrow and Sustainable Economy, Shanghai, China, pp. 32–38.

  2. Brown, A. D. (1990). Microbial water stress physiology. Principles and perspectives. Chichester, United Kingdom: John Wiley and Sons, Ltd.

    Google Scholar 

  3. Vreeland, R. H. (1987). Mechanisms of halotolerance in microorganisms. Critical Reviews in Microbiology, 14, 311–356.

    Article  CAS  Google Scholar 

  4. Csonka, L. N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews, 53, 121–147.

    CAS  Google Scholar 

  5. Bremer, E., & Krämer, R. (2000). Coping with osmotic challenges: Osmoregulation through accumulation and release of compatibles solutes in bacteria. In G. Storz & R. Hengge-Aronis (Eds.), Bacterial stress responses (pp. 79–97). Washington, D.C.: ASM Press.

    Google Scholar 

  6. Sleator, R. D., & Hill, C. (2001). Bacterial osmoadaptation: The role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews, 26, 49–71.

    Article  Google Scholar 

  7. Oren, A. (1986). Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Canadian Journal of Microbiology, 32, 4–9.

    CAS  Google Scholar 

  8. Rengpipat, S., Lowe, S. E., & Zeikus, J. G. (1988). Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. Journal of Bacteriology, 170, 3065–3071.

    CAS  Google Scholar 

  9. Whatmore, A. M., Chudek, J. A., & Reed, R. H. (1990). The effect of osmotic upshock on the intracellular solute pools of Bacillus subtilis. Journal of General Microbiology, 136, 2527–2535.

    CAS  Google Scholar 

  10. Oren, A., Heldal, M., & Norland, S. (1997). X-ray microanalysis of intracellular ions in the anaerobic halophilic eubacterium Haloanaerobium praevalens. Canadian Journal of Microbiology, 43, 588–592.

    Article  CAS  Google Scholar 

  11. Ben-Amotz, A., & Avron, M. (1981). Glycerol and β-carotene metabolism in the halotolerant alga Dunaliella: A model system for biosolar energy conversion. Trends in Biochemical Sciences, 6, 297–299.

    Article  CAS  Google Scholar 

  12. Adler, L., Blomberg, A., & Nilsson, A. (1985). Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. Journal of Bacteriology, 162, 300–306.

    CAS  Google Scholar 

  13. Van Laere, A. J., & Hulsmans, E. (1987). Water potential, glycerol synthesis, and water content of germinating Phycomyces spores. Archives of Microbiology, 147, 257–262.

    Article  Google Scholar 

  14. Mackay, M. A., Norton, R. S., & Borowitzka, L. J. (1984). Organic osmoregulatory solutes in cyanobacteria. Journal of General Microbiology, 130, 2177–2191.

    CAS  Google Scholar 

  15. Reed, R. H., Richardson, D. L., Warr, S. R. C., & Stewart, W. D. P. (1984). Carbohydrate accumulation and osmotic stress in cyanobacteria. Journal of General Microbiology, 130, 1–4.

    CAS  Google Scholar 

  16. Imhoff, J. F., & Rodriguez-Valera, F. (1984). Betaine is the main compatible solute of halophilic eubacteria. Journal of Bacteriology, 160, 478–479.

    CAS  Google Scholar 

  17. Killhamt, K., & Firestone, M. K. (1984). Salt stress control of intracellular solutes in Streptomycetes indigenous to saline soils. Applied and Environmental Microbiology, 47, 301–306.

    Google Scholar 

  18. Ventosa, A., Nieto, J. J., & Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62, 504–544.

    CAS  Google Scholar 

  19. Renan, G., Stéphanie, R., Sylvie, B., Théophile, B., & Carlos, B. (2004). Glutamine, glutamate,and α-glucosylglycerate are the major osmotic solutes accumulated by Erwinia chrysanthemi Strain 3937. Applied and Environmental Microbiology, 70, 6535–6541.

    Article  CAS  Google Scholar 

  20. Dagmar, K., Kathryn, J. P., & Paula, I. W. (2005). Role for glycine betaine transport in Vibrio cholerae osmoadaptation and biofilm formation within microbial communities. Applied and Environmental Microbiology, 71, 3840–3847.

    Article  CAS  Google Scholar 

  21. Vargas, C., Jebbar, M., Carrasco, R., Blanco, C., Calderon, M. I., Iglesias-Guerra, F., et al. (2006). Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens. Journal of Applied Microbiology, 100, 98–107.

    Article  CAS  Google Scholar 

  22. Arias, S., del Moral, A., Ferrer, M. R., Tallon, R., Quesada, E., & Béjar, V. (2003). Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles, 7, 319–326.

    Article  CAS  Google Scholar 

  23. Decho, A. W. (1990). Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes. In Oceanogr. Mar. Biol. Annu. Rev. (Ed., Barnes, M.), Aberdeen. Aberdeen Univ. Press, pp. 73–153.

  24. Mancuso Nichols, C. A., Guezennec, J., & Bowman, J. P. (2005). Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: A review. Marine Biotechnology, 7, 253–271.

    Article  CAS  Google Scholar 

  25. Anderson, C. B., & Witter, L. D. (1982). Glutamine and proline accumulation by Staphylococcus aureus with reduction in water activity. Applied Environmental Microbiology, 43, 1501–1503.

    CAS  Google Scholar 

  26. Brown, E. J. (1978). Compatible solutes and extreme water stress in eucaryotic microorganisms. Advances in Microbial Physiology, 17, 181–242.

    Article  CAS  Google Scholar 

  27. Tempest, D. W., & Meers, J. L. (1970). Influence of environment on the content and composition of microbial free amino acid pools. Journal of General Microbiology, 64, 171–185.

    CAS  Google Scholar 

  28. Britten, R. J., & McClure, F. T. (1962). The amino acid pool in Escherichia coli. Bacteriological Reviews, 26, 292–304.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded jointly by National Natural Science Foundation of China (Grant for Outstanding Youth No.40425001) and the Ministry of Science and Technology of China (2004AA601050). We also thank Wuhan Institute of Virology, Chinese Academy of Science for the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, X., Wang, Y. Ultrastructural and Intracellular Chemical Changes of a Novel Halophilic Strain V430 of Staphylococcus saprophyticus under CaCl2 Stress. Appl Biochem Biotechnol 142, 298–306 (2007). https://doi.org/10.1007/s12010-007-0038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0038-z

Keywords

Navigation