Skip to main content
Log in

Optimization of Spore and Antifungal Lipopeptide Production During the Solid-state Fermentation of Bacillus subtilis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus subtilis strain TrigoCor 1448 was grown on wheat middlings in 0.5-l solid-state fermentation (SSF) bioreactors for the production of an antifungal biological control agent. Total antifungal activity was quantified using a 96-well microplate bioassay against the plant pathogen Fusarium oxysporum f. sp. melonis. The experimental design for process optimization consisted of a 26−1 fractional factorial design followed by a central composite face-centered design. Initial SSF parameters included in the optimization were aeration, fermentation length, pH buffering, peptone addition, nitrate addition, and incubator temperature. Central composite face-centered design parameters included incubator temperature, aeration rate, and initial moisture content (MC). Optimized fermentation conditions were determined with response surface models fitted for both spore concentration and activity of biological control product extracts. Models showed that activity measurements and spore production were most sensitive to substrate MC with highest levels of each response variable occurring at maximum moisture levels. Whereas maximum antifungal activity was seen in a limited area of the design space, spore production was fairly robust with near maximum levels occurring over a wider range of fermentation conditions. Optimization resulted in a 55% increase in inhibition and a 40% increase in spore production over nonoptimized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yamada, S., Takayama, Y., Yamanaka, M., Ko, K., & Yamaguchi, I. (1990). Journal of Pesticide Science, 15, 95–96.

    CAS  Google Scholar 

  2. Vanittanakom, N., Loeffler, W., Koch, U., & Jung, G. (1986). Journal of Antibiotics, 39, 888–901.

    CAS  Google Scholar 

  3. Marten, P., Smalla, K., & Berg, G. (2000). Journal of Applied Microbiology, 89, 463–471.

    Article  CAS  Google Scholar 

  4. Leenders, F., Stein, T. H., Kablitz, B., Franke, P., & Vater, J. (1999). Rapid Communications in Mass Spectrometry, 13, 943–949.

    Article  CAS  Google Scholar 

  5. Ohno, A., Ano, T., & Shoda, M. (1995). Journal of Fermentation and Bioengineering, 80, 517–519.

    Article  CAS  Google Scholar 

  6. Toure, Y., Ongena, M., Jacques, P., Guiro, A., & Thonart, P. (2004). Journal of Applied Microbiology, 96, 1151–1160.

    Article  CAS  Google Scholar 

  7. Akpa, E., Jacques, P., Wathelet, B., Paquot, M., Fuchs, R., Budzikiewicz, H. et al. (2001). Applied Biochemistry and Biotechnology, 91–93, 551–561.

    Article  Google Scholar 

  8. Davis, D. A., Lynch, H. C., & Varley, J. (1999). Enzyme and Microbial Technology, 25, 322–329.

    Article  CAS  Google Scholar 

  9. Jacques, P., Hbid, C., Destain, J., Razafindralambo, H., Paquot, M., De Pauw, E. et al. (1999). Applied Biochemistry and Biotechnology, 77–79, 223–233.

    Article  Google Scholar 

  10. Ohno, A., Ano, T., & Shoda, M. (1993). Journal of Fermentation and Bioengineering, 75, 23–27.

    Article  CAS  Google Scholar 

  11. Hbid, C., Jacques, P., Razafindralambo, H., Mpoyo, M. K., Meurice, E., Paquot, M. et al. (1996). Applied Biochemistry and Biotechnology, 57–58, 571–579.

    Article  Google Scholar 

  12. Ohno, A., Ano, T., & Shoda, M. (1995). Biotechnology and Bioengineering, 47, 209–214.

    Article  CAS  Google Scholar 

  13. Thimon, L., Peypoux, F., Magetdana, R., Roux, B., & Michel, G. (1992). Biotechnology and Applied Biochemistry, 16, 144–151.

    CAS  Google Scholar 

  14. Tsuge, K., Ano, T., & Shoda, M. (1996). Archives of Microbiology, 165, 243–251.

    Article  CAS  Google Scholar 

  15. Kluge, B., Vater, J., Salnikow, J., & Eckart, K. (1988). FEBS Letters, 231, 107–110.

    Article  CAS  Google Scholar 

  16. Huang, C. C., Liao, Z. M., Hirai, M., Ano, T., & Shoda, M. (1998). Journal of Fermentation and Bioengineering, 86, 605–607.

    Article  CAS  Google Scholar 

  17. Ohno, A., Ano, T., & Shoda, M. (1992). Biotechnology Letters, 14, 817–822.

    Article  CAS  Google Scholar 

  18. Kuehl, R. O. (2000). Design of experiments: Statistical principles of research design and analysis. Pacific Grove, CA: Duxbury.

    Google Scholar 

  19. Montgomery, D. C. (1991). Design and analysis of experiments. New York: Wiley.

    Google Scholar 

  20. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters: An introduction to design, data analysis, and model building. New York: Wiley.

    Google Scholar 

  21. Myers, R. H., & Montgomery, D. C. (1995). Response surface methodology: Process and product optimization using designed experiments. New York: Wiley.

    Google Scholar 

  22. Pryor, S. W., Gibson, D. M., Krasnoff, S. B., & Walker, L. P. (2006). Transactions of the ASABE, 49, 1643–1649.

    CAS  Google Scholar 

  23. Bergstrom, G. C., & da Luz, W. C. (2005). Biocontrol for plants with Bacillus subtilis, Pseudomonas putida, and Sporobolomyces roseus. US Patent, 6, 896–883 B2.

  24. Pryor, S. W., Gibson, D. M., Bergstrom, G. C., & Walker, L. P. (2007). BioTechniques, 42, 168–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Gary Bergstrom and Dr. Thomas Zitter in the Department of Plant Pathology, Cornell University, for providing the B. subtilis and F. oxysporum cultures, respectively. This research was supported in part by a USDA MGET (Multi-Disciplinary Graduate Education Traineeship) program grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry P. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pryor, S.W., Gibson, D.M., Hay, A.G. et al. Optimization of Spore and Antifungal Lipopeptide Production During the Solid-state Fermentation of Bacillus subtilis . Appl Biochem Biotechnol 143, 63–79 (2007). https://doi.org/10.1007/s12010-007-0036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0036-1

Keywords

Navigation