Skip to main content
Log in

Production of Nisin Z by Lactococcus lactis Isolated from Dahi

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lactococcus lactis CM1, an isolate from homemade “Dahi,” a traditional fermented milk from India, used maltose as carbon source to produce a high level of bacteriocin. The bacterial cell mass and the bacteriocin production correlated with the initial pH of the medium and were highest when the initial pH was 11.0. The level of bacteriocin reached its peak at the late log phase with concomitant reduction of culture pH to 4.2, regardless of the initial pH of the medium. A combination of maltose and an initial medium pH of 11 resulted in the highest bacteriocin production. The antibacterial spectrum of the bacteriocin was closely similar to that of nisin and it inhibited a number of food spoilage and pathogenic bacteria. Upon sodium dodecyl sulfate polyacrylamide gel electrophoresis, the compound migrated close to the position of nisin (3.5 kDa). However, it had higher stability than nisin at a wide range of pH and temperature. PCR amplification using nisin gene-specific primers and sequencing of the amplified DNA revealed the structural gene for the bacteriocin to be identical to that of nisZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Broughton, J. B. (1990). Food Technology, 44, 100–117.

    Google Scholar 

  2. Rodriguez, J. M. (1996). International Journal of Food Science and Technology, 2, 61–68.

    Article  CAS  Google Scholar 

  3. Jack, R. W., Tagg, J. R., & Ray, B. (1995). Microbiological Reviews, 59, 171–200.

    CAS  Google Scholar 

  4. Thomas, L. V., Clarkson, M. R., & Delves-Broughton, J. (2000). In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 463–524). Boca Raton: CRC Press.

  5. Mulders, J. W. M., Boerrigter, I. J., Roiiema, H. S., Siezen, R. J., & de Vos, W. M. (1991). European Journal of Biochemistry, 201, 581–584.

    Article  CAS  Google Scholar 

  6. de Vos, W. M., Mulders, J. W. M., Siezer, R. J., Hugenholtz, J., & Kuipers, O. (1993). Applied and Environmental Microbiology, 59, 213–218.

    Google Scholar 

  7. Kandler, O., & Weiss, N. (1986). Bergey’s manual of determinative bacteriology, 8th edn., vol. 2. Baltimore: Williams and Wilkins.

    Google Scholar 

  8. Taniguchi, M., Hoshino, K., Urasaki, H., & Fuji, M. (1994). Journal of Fermentation Bioengineering, 77, 704–708.

    Article  CAS  Google Scholar 

  9. van den Berg, D. J. C., Smits, A., Pot, B., Ledeboer, A. M., Kersters, K., Verbakel, J. M. A., et al. (1993). Food Biotechnology, 7, 189–205.

    Google Scholar 

  10. Cardinal, M. S., Meghrous, J., Lacroix, C., & Simard, R. E. (1997). Food Biotechnology, 11, 129–146.

    Article  CAS  Google Scholar 

  11. Shafei, E. I., Abd-EI-Sabour, H. A., Nagwa-Ibrahim, H., & Mostafa, Y. A. (2000). Microbiological Research, 154, 321–331.

    Google Scholar 

  12. Ghrairi, T., Manai, M., Berjeaud, J. M., & Frere, J. (2004). Journal of Applied Microbiology, 97, 621–628.

    Article  CAS  Google Scholar 

  13. Varadaraj, M. C., Devi, N., Keshava, N., & Manjrekar, S. P. (1993). International Journal of Food Microbiology, 20, 259–267.

    Article  CAS  Google Scholar 

  14. Balasubramanyam, B. V., & Varadaraj, M. C. (1998). Journal of Applied Microbiology, 84, 97–102.

    Article  CAS  Google Scholar 

  15. Naidu, A. S., Bidlack, W. R., & Clemens, R. A. (1999). CRC Critical Reviews in Food Science and Nutrition, 39, 13–126.

    Article  CAS  Google Scholar 

  16. Biswas, S. R., Ray, P., Johnson, M. C., & Ray, B. (1991). Applied and Environmental Microbiology, 57, 1265–1267.

    CAS  Google Scholar 

  17. Schillinger, U., & Lucke, F. K. (1989). Applied and Environmental Microbiology, 55, 1901–1906.

    CAS  Google Scholar 

  18. Mundt, J. O. (1986). In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, & G. Holt (Eds.), Bergey’s manual of systematic bacteriology, vol. 2. Baltimore: Williams and Wilkins.

  19. Facklam, R., & Elliott, J. A. (1995). Clinical Microbiology Reviews, 8, 479–495.

    CAS  Google Scholar 

  20. Weisburg, W. A., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). Journal of Bacteriology, 173, 697–703.

    CAS  Google Scholar 

  21. Smith, C. A., Cooper, P. K., & Hanawalt, P. C. (1981). In E. C. Friedberg, & P. C. Hanawalt (Eds.), A laboratory manual of research procedures, vol. 1B (pp. 289–305). New York: Marcel Dekker.

  22. Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J., & de Vos, W. M. (1993). European Journal of Biochemistry, 216, 281–291.

    Article  CAS  Google Scholar 

  23. Bhunia, A. K., Johnson, M. C., & Ray, B. (1987). Journal of Industrial Microbiology, 2, 319–322.

    Article  CAS  Google Scholar 

  24. Blum, H., Beier, H., & Gross, H. J. (1987). Electrophoresis, 8, 93–99.

    Article  CAS  Google Scholar 

  25. Bounaix, S., Benachour, A., & Novel, G. (1996). Applied and Environmental Microbiology, 62, 112–115.

    Google Scholar 

  26. Koponen, O., Tolonen, M., Qiao, M., Wahlstrom, G., Helin, J., & Saris, E. J. (2002). Microbiology, 148, 3561–3568.

    CAS  Google Scholar 

  27. Honda, H., Toyama, Y., Takahashi, H., Nakazecko, T., & Kobayashi, T. (1995). Journal of Fermentation Bioengineering, 79, 589–593.

    Article  CAS  Google Scholar 

  28. Shimizu, H., Mizuguchi, T., & Shioya, S. (1999). Applied and Environmental Microbiology, 65, 3134–3141.

    CAS  Google Scholar 

  29. Cheigh, C. I., Choi, H. J., Park, H., Kim, S. B., Kook, M. C., Kim, T. S., et al. (2002). Journal of Biotechnology, 95, 225–235.

    Article  CAS  Google Scholar 

  30. Mitra, S., Chakrabartty, P. K., & Biswas, S. R. (2005). Current Microbiology, 51, 183–187.

    Article  CAS  Google Scholar 

  31. De Vuyst, L., & Vandamme, E. J. (1992). Journal of General Microbiology, 138, 571–578.

    Google Scholar 

  32. Wenhua, L. Y, Cong, W., & Cai, Z. (2004). Biotechnology Letters, 26, 1713–1716.

    Article  CAS  Google Scholar 

  33. Penna, T. C., & Moraes, D. A. (2002). Applied Biochemistry and Biotechnology, 99, 775–790.

    Article  Google Scholar 

  34. Abee, T., Krockel, L., & Hill, C. (1995). International Journal of Food Microbiology, 28, 169–185.

    Article  CAS  Google Scholar 

  35. Horn, N., Martinez, M. I., Martinez, J. M., Hernandez, P. E., Gasson, M. J., Rodriguez, J. M. et al. (1999). Applied and Environmental Microbiology, 65, 4443–4450.

    CAS  Google Scholar 

  36. Liu, W., & Hansen, N. (1990). Applied and Environmental Microbiology, 56, 2551–2558.

    CAS  Google Scholar 

  37. Hurst, A. (1981). Advances in Applied Microbiology, 27, 85–123.

    Article  CAS  Google Scholar 

  38. Klaenhammer, T. R. (1993). FEMS Microbiology Reviews, 12, 39–86.

    CAS  Google Scholar 

  39. Carminati, D., Giraffa, G., & Bossi, M. J. (1989). Journal of Food Protection, 52, 614–617.

    CAS  Google Scholar 

  40. Park, S. H., Itoh, K., Kikuchi, E., Niwa, H., & Fujisawa, T. (2003). Current Microbiology, 46, 85–388.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This project was supported by financial assistance from the University Grants Commission (F.3-211/2001/SR II), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swadesh Ranjan Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, S., Chakrabartty, P.K. & Biswas, S.R. Production of Nisin Z by Lactococcus lactis Isolated from Dahi. Appl Biochem Biotechnol 143, 41–53 (2007). https://doi.org/10.1007/s12010-007-0032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0032-5

Keywords

Navigation