Applied Biochemistry and Biotechnology

, Volume 143, Issue 1, pp 41–53 | Cite as

Production of Nisin Z by Lactococcus lactis Isolated from Dahi

  • Suranjita Mitra
  • Pran Krishna Chakrabartty
  • Swadesh Ranjan BiswasEmail author


Lactococcus lactis CM1, an isolate from homemade “Dahi,” a traditional fermented milk from India, used maltose as carbon source to produce a high level of bacteriocin. The bacterial cell mass and the bacteriocin production correlated with the initial pH of the medium and were highest when the initial pH was 11.0. The level of bacteriocin reached its peak at the late log phase with concomitant reduction of culture pH to 4.2, regardless of the initial pH of the medium. A combination of maltose and an initial medium pH of 11 resulted in the highest bacteriocin production. The antibacterial spectrum of the bacteriocin was closely similar to that of nisin and it inhibited a number of food spoilage and pathogenic bacteria. Upon sodium dodecyl sulfate polyacrylamide gel electrophoresis, the compound migrated close to the position of nisin (3.5 kDa). However, it had higher stability than nisin at a wide range of pH and temperature. PCR amplification using nisin gene-specific primers and sequencing of the amplified DNA revealed the structural gene for the bacteriocin to be identical to that of nisZ.


Lactococcus lactis Nisin Inhibitory spectrum 



This project was supported by financial assistance from the University Grants Commission (F.3-211/2001/SR II), New Delhi, India.


  1. 1.
    Broughton, J. B. (1990). Food Technology, 44, 100–117.Google Scholar
  2. 2.
    Rodriguez, J. M. (1996). International Journal of Food Science and Technology, 2, 61–68.CrossRefGoogle Scholar
  3. 3.
    Jack, R. W., Tagg, J. R., & Ray, B. (1995). Microbiological Reviews, 59, 171–200.Google Scholar
  4. 4.
    Thomas, L. V., Clarkson, M. R., & Delves-Broughton, J. (2000). In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 463–524). Boca Raton: CRC Press.Google Scholar
  5. 5.
    Mulders, J. W. M., Boerrigter, I. J., Roiiema, H. S., Siezen, R. J., & de Vos, W. M. (1991). European Journal of Biochemistry, 201, 581–584.CrossRefGoogle Scholar
  6. 6.
    de Vos, W. M., Mulders, J. W. M., Siezer, R. J., Hugenholtz, J., & Kuipers, O. (1993). Applied and Environmental Microbiology, 59, 213–218.Google Scholar
  7. 7.
    Kandler, O., & Weiss, N. (1986). Bergey’s manual of determinative bacteriology, 8th edn., vol. 2. Baltimore: Williams and Wilkins.Google Scholar
  8. 8.
    Taniguchi, M., Hoshino, K., Urasaki, H., & Fuji, M. (1994). Journal of Fermentation Bioengineering, 77, 704–708.CrossRefGoogle Scholar
  9. 9.
    van den Berg, D. J. C., Smits, A., Pot, B., Ledeboer, A. M., Kersters, K., Verbakel, J. M. A., et al. (1993). Food Biotechnology, 7, 189–205.Google Scholar
  10. 10.
    Cardinal, M. S., Meghrous, J., Lacroix, C., & Simard, R. E. (1997). Food Biotechnology, 11, 129–146.CrossRefGoogle Scholar
  11. 11.
    Shafei, E. I., Abd-EI-Sabour, H. A., Nagwa-Ibrahim, H., & Mostafa, Y. A. (2000). Microbiological Research, 154, 321–331.Google Scholar
  12. 12.
    Ghrairi, T., Manai, M., Berjeaud, J. M., & Frere, J. (2004). Journal of Applied Microbiology, 97, 621–628.CrossRefGoogle Scholar
  13. 13.
    Varadaraj, M. C., Devi, N., Keshava, N., & Manjrekar, S. P. (1993). International Journal of Food Microbiology, 20, 259–267.CrossRefGoogle Scholar
  14. 14.
    Balasubramanyam, B. V., & Varadaraj, M. C. (1998). Journal of Applied Microbiology, 84, 97–102.CrossRefGoogle Scholar
  15. 15.
    Naidu, A. S., Bidlack, W. R., & Clemens, R. A. (1999). CRC Critical Reviews in Food Science and Nutrition, 39, 13–126.CrossRefGoogle Scholar
  16. 16.
    Biswas, S. R., Ray, P., Johnson, M. C., & Ray, B. (1991). Applied and Environmental Microbiology, 57, 1265–1267.Google Scholar
  17. 17.
    Schillinger, U., & Lucke, F. K. (1989). Applied and Environmental Microbiology, 55, 1901–1906.Google Scholar
  18. 18.
    Mundt, J. O. (1986). In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, & G. Holt (Eds.), Bergey’s manual of systematic bacteriology, vol. 2. Baltimore: Williams and Wilkins.Google Scholar
  19. 19.
    Facklam, R., & Elliott, J. A. (1995). Clinical Microbiology Reviews, 8, 479–495.Google Scholar
  20. 20.
    Weisburg, W. A., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). Journal of Bacteriology, 173, 697–703.Google Scholar
  21. 21.
    Smith, C. A., Cooper, P. K., & Hanawalt, P. C. (1981). In E. C. Friedberg, & P. C. Hanawalt (Eds.), A laboratory manual of research procedures, vol. 1B (pp. 289–305). New York: Marcel Dekker.Google Scholar
  22. 22.
    Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J., & de Vos, W. M. (1993). European Journal of Biochemistry, 216, 281–291.CrossRefGoogle Scholar
  23. 23.
    Bhunia, A. K., Johnson, M. C., & Ray, B. (1987). Journal of Industrial Microbiology, 2, 319–322.CrossRefGoogle Scholar
  24. 24.
    Blum, H., Beier, H., & Gross, H. J. (1987). Electrophoresis, 8, 93–99.CrossRefGoogle Scholar
  25. 25.
    Bounaix, S., Benachour, A., & Novel, G. (1996). Applied and Environmental Microbiology, 62, 112–115.Google Scholar
  26. 26.
    Koponen, O., Tolonen, M., Qiao, M., Wahlstrom, G., Helin, J., & Saris, E. J. (2002). Microbiology, 148, 3561–3568.Google Scholar
  27. 27.
    Honda, H., Toyama, Y., Takahashi, H., Nakazecko, T., & Kobayashi, T. (1995). Journal of Fermentation Bioengineering, 79, 589–593.CrossRefGoogle Scholar
  28. 28.
    Shimizu, H., Mizuguchi, T., & Shioya, S. (1999). Applied and Environmental Microbiology, 65, 3134–3141.Google Scholar
  29. 29.
    Cheigh, C. I., Choi, H. J., Park, H., Kim, S. B., Kook, M. C., Kim, T. S., et al. (2002). Journal of Biotechnology, 95, 225–235.CrossRefGoogle Scholar
  30. 30.
    Mitra, S., Chakrabartty, P. K., & Biswas, S. R. (2005). Current Microbiology, 51, 183–187.CrossRefGoogle Scholar
  31. 31.
    De Vuyst, L., & Vandamme, E. J. (1992). Journal of General Microbiology, 138, 571–578.Google Scholar
  32. 32.
    Wenhua, L. Y, Cong, W., & Cai, Z. (2004). Biotechnology Letters, 26, 1713–1716.CrossRefGoogle Scholar
  33. 33.
    Penna, T. C., & Moraes, D. A. (2002). Applied Biochemistry and Biotechnology, 99, 775–790.CrossRefGoogle Scholar
  34. 34.
    Abee, T., Krockel, L., & Hill, C. (1995). International Journal of Food Microbiology, 28, 169–185.CrossRefGoogle Scholar
  35. 35.
    Horn, N., Martinez, M. I., Martinez, J. M., Hernandez, P. E., Gasson, M. J., Rodriguez, J. M. et al. (1999). Applied and Environmental Microbiology, 65, 4443–4450.Google Scholar
  36. 36.
    Liu, W., & Hansen, N. (1990). Applied and Environmental Microbiology, 56, 2551–2558.Google Scholar
  37. 37.
    Hurst, A. (1981). Advances in Applied Microbiology, 27, 85–123.CrossRefGoogle Scholar
  38. 38.
    Klaenhammer, T. R. (1993). FEMS Microbiology Reviews, 12, 39–86.Google Scholar
  39. 39.
    Carminati, D., Giraffa, G., & Bossi, M. J. (1989). Journal of Food Protection, 52, 614–617.Google Scholar
  40. 40.
    Park, S. H., Itoh, K., Kikuchi, E., Niwa, H., & Fujisawa, T. (2003). Current Microbiology, 46, 85–388.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Suranjita Mitra
    • 1
  • Pran Krishna Chakrabartty
    • 2
  • Swadesh Ranjan Biswas
    • 1
    Email author
  1. 1.Department of BotanyVisva-BharatiSantiniketanIndia
  2. 2.Department of MicrobiologyBose InstituteKolkataIndia

Personalised recommendations