Advertisement

Applied Biochemistry and Biotechnology

, Volume 143, Issue 1, pp 80–92 | Cite as

Ensiling Agricultural Residues for Bioethanol Production

  • Ye Chen
  • Ratna R. Sharma-ShivappaEmail author
  • Chengci Chen
Article

Abstract

The potential of using ensiling, with and without supplemental enzymes, as a cost-effective pretreatment for bioethanol production from agricultural residues was investigated. Ensiling did not significantly affect the lignin content of barley straw, cotton stalk, and triticale hay ensiled without enzyme, but slightly increased the lignin content in triticale straw, wheat straw, and triticale hay ensiled with enzyme. The holocellulose (cellulose plus hemicellulose) losses in the feedstocks, as a result of ensiling, ranged from 1.31 to 9.93%. The percent holocellulose loss in hays during ensiling was lower than in straws and stalks. Ensiling of barley, triticale, wheat straws, and cotton stalk significantly increased the conversion of holocellulose to sugars during subsequent hydrolysis with two enzyme combinations. Enzymatic hydrolysis of ensiled and untreated feedstocks by Celluclast 1.5 L-Novozyme 188 enzyme combination resulted in equal or higher saccharification than with Spezyme® CP–xylanase combination. Enzyme loadings of 40 and 60 FPU/g reducing sugars gave similar sugar yields. The percent saccharification with Celluclast 1.5 L-Novozyme 188 at 40 FPU/g reducing sugars was 17.1 to 43.6%, 22.4 to 46.9%, and 23.2 to 32.2% for untreated feedstocks, feedstocks ensiled with, and without enzymes, respectively. Fermentation of the hydrolysates from ensiled feedstocks resulted in ethanol yields ranging from 0.21 to 0.28 g/g reducing sugars.

Keywords

Carbohydrate Ensiling Enzyme Feedstocks Fermentation Hydrolysis Lignin Pretreatment 

Notes

Acknowledgement

Funding for this study was provided by the US Department of Agriculture.

References

  1. 1.
    National Energy Policy (2001), Reliable, Affordable, and Environmentally Sound Energy for America’s Future. National-Energy-Policy.pdf, accessed July 12 2006, http://www.whitehouse.gov/energy/.
  2. 2.
    Li, Y., Ruan, R. R., Chen, P., & Ma, H. (2001). In Proceedings of the ASAE Annual International Meeting (Paper number 01-6155); Sacramento, CA.Google Scholar
  3. 3.
    Schell, D. J., Farmer, J., Newman, M., & Mcmillan, J. D. (2003). Applied Biochemistry and Biotechnology, 105, 69–86.CrossRefGoogle Scholar
  4. 4.
    Chang, V., & Holtzapple, M. (2000). Applied Biochemistry and Biotechnology, 84–86, 5–37.CrossRefGoogle Scholar
  5. 5.
    Lynd, L. R. (1996). Annual Review of Energy and the Environment, 21, 403–465.CrossRefGoogle Scholar
  6. 6.
    Wyman, C. E. (1999). Annual Review of Energy and the Environment, 24, 189–226.CrossRefGoogle Scholar
  7. 7.
    Lynd, L. R., Elander, R. T., & Wyman, C. E. (1996). Applied Biochemistry and Biotechnology, 57/58, 741–761.CrossRefGoogle Scholar
  8. 8.
    Keller, F. A., Hamilton, J. E., & Nguyen, Q. A. (2003). Applied Biochemistry and Biotechnology, 105, 27–41.CrossRefGoogle Scholar
  9. 9.
    Bjerre, A. B., Olessen, A. B., Fernqvist, T., Ploger, A., & Schmidt, A. S. (1996). Biotechnology and Bioengineering, 49, 568–577.CrossRefGoogle Scholar
  10. 10.
    Oliva, J. M., Negro, M. J., Saez, F., Ballesteros, I., Manzanares, P., Gonzalez, A., & Ballesteros, M. (2006). Process Biochemistry, 41(5), 1223–1228.CrossRefGoogle Scholar
  11. 11.
    Weinberg, Z. G., & Ashbell, G. (2003). Biochemical Engineering Journal, 13(2–3), 181–188.CrossRefGoogle Scholar
  12. 12.
    Thompson, D. N., Barnes, J. M., & Houghton, T. P. (2005). Applied Biochemistry and Biotechnology, 121–124, 21–46.CrossRefGoogle Scholar
  13. 13.
    Linden, J. C., Henk, L. L., Simith, D. H., Gabrielsen, B. C., Tengerdy, R. P., & Czako, L. (1987). Biotechnology and Bioengineering, 30, 860–867.CrossRefGoogle Scholar
  14. 14.
    Linden, J. C., Moreira, A. R., Smith, D. H., Hedrick, W. S., & Villet, R. H. (1980). Biotechnology and Bioengineering Symposium, 22, 199–212.Google Scholar
  15. 15.
    Singh, K., Honig, H., Wermke, M., & Zimmer, E. (1996). Animal Feed Science and Technology, 61, 137–153.CrossRefGoogle Scholar
  16. 16.
    ASAE Standards (2001). ASAE S269.4 DEC01—ASAE Power and Machinery Division, St. Joseph, MI, US.Google Scholar
  17. 17.
    Henk, L. L., & Linden, J. C. (1992). Enzyme and Microbial Technology, 14, 923–930.CrossRefGoogle Scholar
  18. 18.
    Chen, Y., Sharma-Shivappa, R. R., Keshwani, D., & Chen, C. C. (2007). Applied Biochemistry and Biotechnology, (In press).Google Scholar
  19. 19.
    Bakken, L. R., & Olsen, R. A. (1983). Applied and Environmental Microbiology, 45(4), 1188–1195.Google Scholar
  20. 20.
    Palmarola-Adrados, B., Choteborska, P., Galbe, M., & Zacchi, G. (2005). Bioresource Technology, 96, 843–850.CrossRefGoogle Scholar
  21. 21.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004a). Determination of total solids in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.Google Scholar
  22. 22.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004b). Determination of ash in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.Google Scholar
  23. 23.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004c). Determination of structural carbohydrates and lignin in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.Google Scholar
  24. 24.
    Han, J., & Rowell, J. (1997), Chemical composition of fibers. In R. Rowell, R. Young, & J. Rowell (Eds.), Paper composites from agro-based resources (pp. 83–134). New York: CRC Lewis Publisher.Google Scholar
  25. 25.
    Chaplin, M. F., & Kennedy, J. F. (1994). In Carbohydrate analysis: A practical approach. Oxford, UK: ILR Press.Google Scholar
  26. 26.
    Chinn, M. S., Nokes, S. E., & Strobel, H. J. (2006). Biotechnology Progress, 22(1), 53–59.CrossRefGoogle Scholar
  27. 27.
    Huang, Y., Stankiewicz, B. A., Eglinton, G., Snape, C. E., Evans, B., Latter, P. M., et al. (1998). Soil Biology & Biochemistry, 30, 1517–1528.CrossRefGoogle Scholar
  28. 28.
    Arroquy, J. I., Cochran, R. C., Nagaraja, T. G., Titgemeyer, E. C., & Johnson, D. E. (2005). Animal Feed Science and Technology, 120(1–2), 93–106.CrossRefGoogle Scholar
  29. 29.
    Ohmomo, S., Tanaka, O., Kitamoto, H. K., & Cai, Y. (2002). Japan Agricultural Research Quarterly, 36(2), 59–71.Google Scholar
  30. 30.
    Roberts, C. A. (1995). In K. J. Moore, & M. A. Peterson (Eds.), Post-harvest physiology and preservation of forages (pp. 21–38). Madison, WI: CSSA-ASA.Google Scholar
  31. 31.
    Pahlow, G., Muck, R. E., Driehus, F., Oude Elferink, S. J. W. H., & Spoelstra, S. F. (2003). In D. R. Buxton, R. E. Muck, & J. H. Harrison (Eds.), Silage science and technology (pp. 250–304). Madison, WI: ASA-CSSA-SSSA.Google Scholar
  32. 32.
    Jung, H. G., Buxton, D. R., Hatfield, R. D., & Ralph, J. (1993). In Proceedings of the international symposium on forage cell wall structure and digestibility. Madison, WI: American Society of Agronomy, Inc.Google Scholar
  33. 33.
    Richard, T. L., Proulx, S., Moore, K. J., & Shouse, S. (2001). In Proceedings of the ASAE annual international meeting (Paper number 01-6019). Sacramento, CA.Google Scholar
  34. 34.
    Agblevor, F. A., Evans, R. J., & Johnson, K. D. (1994). Journal of Analytical and Applied Pyrolysis, 30, 125–144.CrossRefGoogle Scholar
  35. 35.
    Agblevor, F. A., Batz, S., & Trumbo, J. (2003). Applied Biochemistry and Biotechnology, 105–108, 219–230.CrossRefGoogle Scholar
  36. 36.
    Dittmar, T., & Lara, R. J. (2001). Geochimica et Cosmochimica Acta, 65, 1417–1428.CrossRefGoogle Scholar
  37. 37.
    Linden, J. C., Henk, L. L., Murphy, V. G., Smith, D. H., Gabrielsen, B. C., Tengerdy, R. P., et al. (1987). Biotechnology and Bioengineering, 30, 860–867.CrossRefGoogle Scholar
  38. 38.
    Yang, X., Chen, H., Gao, H., & Li, Z. (2000). Bioresource Technology, 78, 277–280.CrossRefGoogle Scholar
  39. 39.
    Anderson, J. W., & Beardall, J. (1991). In Molecular activities of plant cells (pp. 275–283). Oxford, UK: Blackwell Scientific Publications.Google Scholar
  40. 40.
    Béguin, P., & Aubert, J.-P. (1994). FEMS Microbiology Reviews, 13, 25–58.CrossRefGoogle Scholar
  41. 41.
    Tengborg, C., Galbe, M., & Zacchi, G. (2001). Biotechnology Progress, 17, 110–117.CrossRefGoogle Scholar
  42. 42.
    Duarte, L. C., Carvalheiro, F., Lopes, S., Marques, S., Parajo, J. C., & Girio, F. M. (2004). Applied Biochemistry and Biotechnology, 113–116, 1041–1058.CrossRefGoogle Scholar
  43. 43.
    Saddler, J. N., Yu, E. K. C., Mes-Hartree, M., Levitin, N., & Brownell, H. H. (1983). Applied and Environmental Microbiology, 45(1), 153–160.Google Scholar
  44. 44.
    Gosakov, A. V., Sinitsyn, A. P., & Klyosov, A. A. (1986). Biotechnology and Bioengineering, 29, 906–910.CrossRefGoogle Scholar
  45. 45.
    Lloyd, T. A., & Wyman, C. E. (2005). Bioresource Technology, 96, 1967–1977.CrossRefGoogle Scholar
  46. 46.
    Spindler, D., Wyman, C., & Grohmann, K. (1990). Applied Biochemistry and Biotechnology, 24/25, 275–286.Google Scholar
  47. 47.
    Spindler, D. D., Wyman, C. E., Grohmann, K., & Mohagheghi, A. (1989). Applied Biochemistry and Biotechnology, 20/21, 529–540.Google Scholar
  48. 48.
    Lima, K. G. D., Takahashi, C. M., & Alterthum, F. (2002). Journal of Industrial Microbiology & Biotechnology, 29, 124–128.CrossRefGoogle Scholar
  49. 49.
    Saha, B. C., & Cotta, M. A. (2006). Biotechnology Progress, 22(2), 449–453.CrossRefGoogle Scholar
  50. 50.
    Boyle, M., Barron, N., & McHale, A. P. (1997). Biotechnology Letters, 19(1), 49–51.CrossRefGoogle Scholar
  51. 51.
    Belkacemi, K., Turcotte, G., de Halleux, D., & Savoie, P. (1998). Applied Biochemistry and Biotechnology, 70–72, 441–462.CrossRefGoogle Scholar
  52. 52.
    Claassen, P. A. M., van Lier, J. B., Contreras, A. M. L., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., et al. (1999). Applied Microbiology and Biotechnology, 52(6), 741–755.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Ye Chen
    • 1
  • Ratna R. Sharma-Shivappa
    • 1
    Email author
  • Chengci Chen
    • 2
  1. 1.Department of Biological and Agricultural EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Central Agricultural Research CenterMontana State UniversityMoccasinUSA

Personalised recommendations