Advertisement

Applied Biochemistry and Biotechnology

, Volume 143, Issue 1, pp 16–26 | Cite as

Solid-state Fermentation for Enhanced Production of Laccase using Indigenously Isolated Ganoderma sp.

  • Madhavi S. Revankar
  • Kiran M. Desai
  • S. S. LeleEmail author
Article

Abstract

Laccase production by solid-state fermentation (SSF) using an indigenously isolated white rot basidiomycete Ganoderma sp. was studied. Among the various agricultural wastes tested, wheat bran was found to be the best substrate for laccase production. Solid-state fermentation parameters such as optimum substrate, initial moisture content, and inoculum size were optimized using the one-factor-at-a-time method. A maximum laccase yield of 2,400 U/g dry substrate (U/gds) was obtained using wheat bran as substrate with 70% initial moisture content at 25°C and the seven agar plugs as the inoculum. Further enhancement in laccase production was achieved by supplementing the solid-state medium with additional carbon and nitrogen source such as starch and yeast extract. This medium was optimized by response surface methodology, and a fourfold increase in laccase activity (10,050 U/g dry substrate) was achieved. Thus, the indigenous isolate seems to be a potential laccase producer using SSF. The process also promises economic utilization and value addition of agro-residues.

Keywords

Laccase Ganoderma sp. Solid-state fermentation Response surface methodology 

References

  1. 1.
    Bajpai, P. (1999). Biotechnology Progress, 15, 147–157.CrossRefGoogle Scholar
  2. 2.
    Bollag, J. M., & Leonowicz, A. (1984). Applied and Environmental Microbiology, 48(4), 849–854.Google Scholar
  3. 3.
    Breen, A., & Singleton, F. L. (1999). Current Opinion in Biotechnology, 10, 252–258.CrossRefGoogle Scholar
  4. 4.
    Gu, X. B., Zheng, Z. M., Yu, H. Q., Wang, J., Liang, F. L., & Liu, R. L. (2005). Process Biochemistry, 40, 3196–3201.CrossRefGoogle Scholar
  5. 5.
    Higuchi, T. (1990). Wood Science and Technology, 24, 23–63.CrossRefGoogle Scholar
  6. 6.
    Karam, J., & Nicell, J. A. (1997). Journal of Chemistry Technology and Biotechnology, 69, 141–153.CrossRefGoogle Scholar
  7. 7.
    Lorenzo, M., Moldes, D., Rodriguez Couto, S., & Sanroman, A. (2002). Bioresource Technology, 82, 109–113.CrossRefGoogle Scholar
  8. 8.
    Machuca, A., Aoyama, H., & Duran, N. (1998). Biotechnology and Applied Biochemistry, 27, 217–223.Google Scholar
  9. 9.
    Myers, R. H., & Montgomery, D. C. (1995). Response surface methodology: Process and product optimization using designed experiments. New York, NY: Wiley.Google Scholar
  10. 10.
    Niku Paavola, M. L., Karhunen, E., Salola, P., & Raunio, V. (1988). Biochemical Journal, 254, 877–884.Google Scholar
  11. 11.
    Nyanhongo, G. S., Gomes, J., Gubitz, G., Zvauya, R., Read, J. S., & Steiner, W. (2002). Bioresource Technology, 84, 259–263.CrossRefGoogle Scholar
  12. 12.
    Orth, A. B., Royse, D. J., & Tien, M. (1993). Applied and Environmental Microbiology, 59, 4017–4083.Google Scholar
  13. 13.
    Pandey, A. (1992). Process Biochemistry, 7, 109–116.CrossRefGoogle Scholar
  14. 14.
    Pandey, A. (Ed.) (1994). Solid state fermentation. New Delhi: Wiley Eastern Limited.Google Scholar
  15. 15.
    Pandey, A., Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Current Science, 77, 149–162.Google Scholar
  16. 16.
    Paszczynski, A., & Crawford, R. L. (1995). Biotechnology Progress, 11, 368–379.CrossRefGoogle Scholar
  17. 17.
    Reddy, C. A. (1995). Current Opinion in Biotechnology, 6, 320–328.CrossRefGoogle Scholar
  18. 18.
    Revankar, M. S., & Lele, S. S. (2006). Process Biochemistry, 41(3), 581–588.CrossRefGoogle Scholar
  19. 19.
    Sabu, A., Pandey, A., Daud, M. J., & Szakacs, G. (2005). Bioresource Technology, 96, 1223–1228.CrossRefGoogle Scholar
  20. 20.
    Shah, V., & Nerud, F. (2002). Canadian Journal of Microbiology, 48, 857–870.CrossRefGoogle Scholar
  21. 21.
    Techapun, C., Charoenrat, T., Watanabe, M., Sasaki, K., & Poosaran, N. (2002). Biochemical Journal, 12, 99–105.CrossRefGoogle Scholar
  22. 22.
    Thurston, C. F. (1994). Microbiology, 140, 19–26.CrossRefGoogle Scholar
  23. 23.
    Vasconcelos, A. D., Barbosa, A. M., Dekker, R. F. H., Scarminio, I. S., & Rezende, M. I. (2000). Process Biochemistry, 35, 1131–1138.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Madhavi S. Revankar
    • 1
  • Kiran M. Desai
    • 1
  • S. S. Lele
    • 1
    Email author
  1. 1.Food Engineering and Technology Department, Institute of Chemical TechnologyUniversity of MumbaiMatungaIndia

Personalised recommendations