Skip to main content

Advertisement

Log in

Mutation of Tyr-218 to Phe in Thermoanaerobacter ethanolicus Secondary Alcohol Dehydrogenase: Effects on Bioelectronic Interface Performance

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bioelectronic interfaces that facilitate electron transfer between the electrode and a dehydrogenase enzyme have potential applications in biosensors, biocatalytic reactors, and biological fuel cells. The secondary alcohol dehydrogenase (2° ADH) from Thermoanaerobacter ethanolicus is especially well suited for the development of such bioelectronic interfaces because of its thermostability and facile production and purification. However, the natural cofactor for the enzyme, β-nicotinamide adenine dinucleotide phosphate (NADP+), is more expensive and less stable than β-nicotinamide adenine dinucleotide (NAD+). PCR-based, site-directed mutagenesis was performed on 2° ADH in an attempt to adjust the cofactor specificity toward NAD+ by mutating Tyr218 to Phe (Y218F 2° ADH). This mutation increased the K m(app) for NADP+ 200-fold while decreasing the K m(app) for NAD+ 2.5-fold. The mutant enzyme was incorporated into a bioelectronic interface that established electrical communication between the enzyme, the NAD+, the electron mediator toluidine blue O (TBO), and a gold electrode. Cyclic voltammetry, impedance spectroscopy, gas chromatography, mass spectrometry, constant potential amperometry, and chronoamperometry were used to characterize the mutant and wild-type enzyme incorporated in the bioelectronic interface. The Y218F 2° ADH exhibited a fourfold increase in the turnover ratio compared to the wild type in the presence of NAD+. The electrochemical and kinetic measurements support the prediction that the Rossmann fold of the enzyme binds to the phosphate moiety of the cofactor. During the 45 min of continuous operation, NAD+ was electrically recycled 6.7 × 104 times, suggesting that the Y218F 2° ADH-modified bioelectronic interface is stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armstrong, F. A., Heering, H. A., & Hirst, J. (1997). Reactions of complex metalloproteins studied by protein-film voltammetry. Chemical Society Reviews, 26(3), 169–179.

    Article  CAS  Google Scholar 

  2. Halbhuber, Z., Petrmichlova, Z., Alexciev, K., Thulin, E., & Stys, D. (2003). Overexpression and purification of recombinant membrane PsbH protein in Escherichia coli. Protein Expression and Purification, 32(1), 18–27.

    Article  CAS  Google Scholar 

  3. Park, D. H., Laivenieks, M., Guettler, M. V., Jain, M. K., & Zeikus, J. G. (1999). Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Applied and Environmental Microbiology, 65(7), 2912–2917.

    CAS  Google Scholar 

  4. Park, D. H., & Zeikus, J. G. (1999). Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. Journal of Bacteriology, 181(8), 2403–2410.

    CAS  Google Scholar 

  5. Chen, T., Barton, S. C., Binyamin, G., Gao, Z. Q., Zhang, Y. C., Kim, H. H., et al. (2001). A miniature biofuel cell. Journal of the American Chemical Society, 123(35), 8630–8631.

    Article  CAS  Google Scholar 

  6. Tsujimura, S., Fujita, M., Tatsumi, H., Kano, K., & Ikeda, T. (2001). Bioelectrocatalysis-based dihydrogen/dioxygen fuel cell operating at physiological pH. Physical Chemistry Chemical Physics, 3(7), 1331–1335.

    Article  CAS  Google Scholar 

  7. Jornvall, H., Eklund, H., & Branden, C. I. (1978). Subunit conformation of yeast alcohol-dehydrogenase. Journal of Biological Chemistry, 253(23), 8414–8419.

    CAS  Google Scholar 

  8. Keinan, E., Hafeli, E. K., Seth, K. K., & Lamed, R. (1986). Thermostable enzymes in organic-synthesis 2. Asymmetric reduction of ketones with alcohol-dehydrogenase from Thermoanaerobium-Brockii. Journal of the American Chemical Society, 108(1), 162–169.

    Article  CAS  Google Scholar 

  9. Keinan, E., Seth, K. K., & Lamed, R. (1987). Synthetic applications of alcohol-dehydrogenase from Thermoanaerobium-Brockii. Annals of the New York Academy of Sciences, 501, 130–149.

    Article  Google Scholar 

  10. Heiss, C., Laivenieks, M., Zeikus, J. G., & Phillips, R. S. (2001). Mutation of cysteine-295 to alanine in secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus affects the enantioselectivity and substrate specificity of ketone reductions. Bioorganic & Medicinal Chemistry, 9(7), 1659–1666.

    Article  CAS  Google Scholar 

  11. Tripp, A. E., Burdette, D. S., Zeikus, J. G., & Phillips, R. S. (1998). Mutation of serine-39 to threonine in thermostable secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus changes enantiospecificity. Journal of the American Chemical Society, 120(21), 5137–5141.

    Article  CAS  Google Scholar 

  12. Kosjek, B., Stampfer, W., Pogorevc, M., Goessler, W., Faber, K., & Kroutil, W. (2004). Purification and characterization of a chemotolerant alcohol dehydrogenase applicable to coupled redox reactions. Biotechnology and Bioengineering, 86(1), 55–62.

    Article  CAS  Google Scholar 

  13. Peretz, M., Bogin, O., TelOr, S., Cohen, A., Li, G. S., Chen, J. S., et al. (1997). Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenases from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii. Anaerobe, 3(4), 259–270.

    Article  CAS  Google Scholar 

  14. Schuhmann, W., Ohara, T. J., Schmidt, H. L., & Heller, A. (1991). Electron-transfer between glucose-oxidase and electrodes via redox mediators bound with flexible chains to the enzyme surface. Journal of the American Chemical Society, 113(4), 1394–1397.

    Article  CAS  Google Scholar 

  15. Rosell, A., Valencia, E., Ochoa, W. F., Fita, I., Pares, X., & Farres, J. (2003). Complete reversal of coenzyme specificity by concerted mutation of three consecutive residues in alcohol dehydrogenase. Journal of Biological Chemistry, 278(42), 40573–40580.

    Article  CAS  Google Scholar 

  16. Burdette, D. S., Vieille, C., & Zeikus, J. G. (1996). Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochemical Journal, 316, 115–122.

    CAS  Google Scholar 

  17. Burdette, D. S., Secundo, F., Phillips, R. S., Dong, J., Scott, R. A., & Zeikus, J. G. (1997). Biophysical and mutagenic analysis of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase activity and specificity. Biochemical Journal, 326, 717–724.

    CAS  Google Scholar 

  18. Kleifeld, O., Frenkel, A., Bogin, O., Eisenstein, M., Brumfeld, V., Burstein, Y., et al. (2000). Spectroscopic studies of inhibited alcohol dehydrogenase from Thermoanaerobacter brockii: Proposed structure for the catalytic intermediate state. Biochemistry, 39(26), 7702–7711.

    Article  CAS  Google Scholar 

  19. Blaedel, W. J., & Jenkins, R. A. (1975). Study of electrochemical oxidation of reduced nicotinamide adenine-dinucleotide. Analytical Chemistry, 47(8), 1337–1343.

    Article  CAS  Google Scholar 

  20. Prodromidis, M. I., & Karayannis, M. I. (2002). Enzyme based amperometric biosensors for food analysis. Electroanalysis, 14(4), 241–261.

    Article  CAS  Google Scholar 

  21. Schmakel, C. O., Santhanam, K. S. V., & Elving, P. J. (1975). Nicotinamide adenine-dinucleotide (Nad+) and related compounds - electrochemical redox pattern and allied chemical behavior. Journal of the American Chemical Society, 97(18), 5083–5092.

    Article  CAS  Google Scholar 

  22. Serban, S., & El Murr, N. (2004). Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes - new approach of dehydrogenase based biosensors. Biosensors & Bioelectronics, 20(2), 161–166.

    Article  CAS  Google Scholar 

  23. Emr, S. A., & Yacynych, A. M. (1995). Use of polymer-films in amperometric biosensors. Electroanalysis, 7(10), 913–923.

    Article  CAS  Google Scholar 

  24. Heller, A. (1990). Electrical wiring of redox enzymes. Accounts of Chemical Research, 23(5), 128–134.

    Article  CAS  Google Scholar 

  25. Degani, Y., & Heller, A. (1987). Direct electrical communication between chemically modified enzymes and metal-electrodes 1. Electron-transfer from glucose-oxidase to metal-electrodes via electron relays, bound covalently to the enzyme. Journal of Physical Chemistry, 91(6), 1285–1289.

    Article  CAS  Google Scholar 

  26. Badia, A., Carlini, R., Fernandez, A., Battaglini, F., Mikkelsen, S. R., & English, A. M. (1993). Intramolecular electron-transfer rates in ferrocene-derivatized glucose-oxidase. Journal of the American Chemical Society, 115(16), 7053–7060.

    Article  CAS  Google Scholar 

  27. Zayats, M., Katz, E., & Willner, I. (2002). Electrical contacting of flavoenzymes and NAD(P)(+)-dependent enzymes by reconstitution and affinity interactions on phenylboronic acid monolayers associated with Au-electrodes. Journal of the American Chemical Society, 124(49), 14724–14735.

    Article  CAS  Google Scholar 

  28. Riklin, A., Katz, E., Willner, I., Stocker, A., & Buckmann, A. F. (1995). Improving enzyme-electrode contacts by redox modification of cofactors. Nature, 376(6542), 672–675.

    Article  CAS  Google Scholar 

  29. Hassler, B. L., & Worden, R. M. (2006). Versatile bioelectronic interfaces based on heterotrifunctional linking molecules. Biosensors & Bioelectronics, 21(11), 2146–2154.

    CAS  Google Scholar 

  30. Oka, A., Sugisaki, H., & Takanami, M. (1981). Nucleotide-sequence of the Kanamycin Resistance Transposon Tn903. Journal of Molecular Biology, 147(2), 217–226.

    Article  CAS  Google Scholar 

  31. Sambrook, J. M., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd edn.). Cold Springs Harbor, NY: Cold Springs Harbor Laboratory Press.

    Google Scholar 

  32. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (1993). Current protocols in molecular biology. New York, NY: Greene Publishing and Wiley-Interscience.

    Google Scholar 

  33. Burdette, D., & Zeikus, J. G. (1994). Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter-ethanolicus 39e and characterization of the secondary-alcohol dehydrogenase(2-Degrees Adh) as a bifunctional alcohol-dehydrogenase acetyl-Coa reductive thioesterase. Biochemical Journal, 302, 163–170.

    CAS  Google Scholar 

  34. Brooks, S. P. J. (1992). A simple computer-program with statistical tests for the analysis of enzyme-kinetics. Biotechniques, 13(6), 906–911.

    CAS  Google Scholar 

  35. Armstrong, R. D., Bell, M. F., & Metcalfe, A. A. (1977). Method for automatic impedance measurement and analysis. Journal of Electroanalytical Chemistry, 77(3), 287–298.

    Article  CAS  Google Scholar 

  36. Mostany, J., & Scharifker, B. R. (1997). Impedance spectroscopy of undoped, doped and overoxidized polypyrrole films. Synthetic Metals, 87(3), 179–185.

    Article  CAS  Google Scholar 

  37. Katz, E., & Willner, I. (1997). Kinetic separation of amperometric responses of composite redox-active monolayers assembled onto Au electrodes: Implications to the monolayers’ structure and composition. Langmuir, 13(13), 3364–3373.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Michigan Technology Tri-Corridor (MTTC) program of the Michigan Economic Development Corporation (MEDC) and the IRGP programs at Michigan State University (MSU) for funding this work. Analytical support provided by the analytical chemistry facility in the MSU Department of Chemistry is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Worden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassler, B.L., Dennis, M., Laivenieks, M. et al. Mutation of Tyr-218 to Phe in Thermoanaerobacter ethanolicus Secondary Alcohol Dehydrogenase: Effects on Bioelectronic Interface Performance. Appl Biochem Biotechnol 143, 1–15 (2007). https://doi.org/10.1007/s12010-007-0027-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0027-2

Keywords

Navigation