Skip to main content
Log in

Significant Improvement of Serratia marcescens Lipase Fermentation, by Optimizing Medium, Induction, and Oxygen Supply

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Production of an extracellular lipase from Serratia marcescens ECU1010, which is an industrially important biocatalyst for the stereospecific synthesis of Diltiazem precusor, was carefully optimized in both shake flasks and a fermenter, using Tween-80 as the enzyme inducer. Dextrin and beef extract combined with ammonium sulfate were indicated to be the best carbon and nitrogen sources, respectively. With the increase of Tween-80 from 0 to 10 g l−1, the lipase production was greatly enhanced from merely 250 U l−1 to a maximum of 3,340 U l−1, giving the highest lipase yield of ca 640 U g−1 dry cell mass (DCW), although the maximum biomass (6.0 g DCW l−1) was achieved at 15 g l−1 of Tween-80. When the medium loading in shake flasks was reduced from 20 to 10% (v / v), the lipase production was significantly enhanced. The increase in shaking speed also resulted in an improvement of the lipase production, although the cell growth was slightly repressed, suggesting that the increase of dissolved oxygen (DO) concentration contributed to the enhancements of lipase yield. When the lipase fermentation was carried out in a 5-l fermenter, the lipase production reached a new maximum of 11,060 U l−1 by simply raising the aeration rate from 0.5 to 1.0 vvm, while keeping the dissolved oxygen above 20% saturation via intermittent adjustment of the agitation speed (≥400 rpm), in the presence of a relatively low concentration (2 g l−1) of Tween-80 to prevent a potential foaming problem, which is easy to occur in the intensively aerated fermenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., Heuvel, M., & Misset, O. (1994). FEMS Microbiology Reviews, 15, 29–36.

    Article  CAS  Google Scholar 

  2. Jaeger, K. E., Schneidinger, B., Rosenau, F., Werner, M., Lang, D., Dijkstra, B. W., et al. (1997). Journal of Molecular Catalysis. B, Enzymatic, 3, 3–12.

    Article  CAS  Google Scholar 

  3. Reetz, M. T. (2002). Current Opinion in Biotechnology, 6, 145–150.

    Article  CAS  Google Scholar 

  4. Muralidhar, R. V., Marchant, R., & Nigam, P. (2001). Journal of Chemical Technology & Biotechnology, 76, 3–8.

    Article  CAS  Google Scholar 

  5. Koeller, K. M., & Wong, C. H. (2001). Nature, 409, 232–240.

    Article  CAS  Google Scholar 

  6. Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Nature, 409, 258–268.

    Article  CAS  Google Scholar 

  7. Klibanov, A. M. (2001). Nature, 409, 241–246.

    Article  CAS  Google Scholar 

  8. Shibatani, T., & Nakamichi, K. (1990). European Patent Application 362 556.

  9. Dodds, D. R., & Lopez, J. L. (1993). US Patent 5 274 300.

  10. Matsumae, H., Furui, M., & Shibatani, T. (1993). Journal of Fermentation and Bioengineering, 75, 93–98.

    Article  CAS  Google Scholar 

  11. Matsumae, H., Furui, M., Shibatani, T., & Tosa, T. (1994). Journal of Fermentation and Bioengineering, 78, 59–63.

    Article  CAS  Google Scholar 

  12. Gao, L., Xu, J. H., Li, X. J., & Liu, Z. Z. (2004). Journal of Industrial Microbiology & Biotechnology, 31, 525–530.

    Article  CAS  Google Scholar 

  13. Dalmau, E., Montesinos, J. L., Lotti, M., & Casas, C. (2001). Enzyme and Microbial Technology, 26, 657–663.

    Article  Google Scholar 

  14. Li, C. Y., Cheng, C. Y., & Chen, T. L. (2001). Enzyme and Microbial Technology, 29, 258–263.

    Article  CAS  Google Scholar 

  15. Li, X. Y., Tetling, S., Winkler, U. K., Jaeger, K. E., & Benedik, M. J. (1995). Applied and Environmental Microbiology, 61, 2674–2680.

    CAS  Google Scholar 

  16. Gupta, R., Gupta, N., & Rathi, P. (2004). Applied Microbiology and Biotechnology, 64, 763–781.

    Article  CAS  Google Scholar 

  17. Giuseppin, M. L. F. (1984). Applied Microbiology and Biotechnology, 20, 161–165.

    Article  CAS  Google Scholar 

  18. Frost, G. M., & Moss, D. A. (1987). In H. J. Rehm & G. Reed (Eds.), Biotechnology, Vol 7a (pp. 65–211). Weinheim, Germany: VCH Verlag.

    Google Scholar 

  19. Chen, J. Y., Wen, C. M., & Chen, T. L. (1999). Biotechnology and Bioengineering, 62, 311–316.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was financially supported by the National Natural Science Foundation of China (Nos. 20272013, 20506037, and 203900506), Ministry of Science and Technology, People’s Republic of China (No. 2003CB716008) and the Science Commission of Shanghai Municipal Government (No. 05DZ19350).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-He Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, ZD., Xu, JH. & Pan, J. Significant Improvement of Serratia marcescens Lipase Fermentation, by Optimizing Medium, Induction, and Oxygen Supply. Appl Biochem Biotechnol 142, 148–157 (2007). https://doi.org/10.1007/s12010-007-0023-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0023-6

Keywords

Navigation