Skip to main content
Log in

Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To find a new use of rice bran, five fungi were examined for the production of exo-biopolymer with macrophage-stimulating activity from rice bran. Among the exo-biopolymers produced from the cultures, Monascus pilosus had the most potent macrophage stimulating activity in a liquid culture rather than in a solid culture. In order to improve the yield of exo-biopolymer with macrophage-stimulating activity, a suitable medium for exo-biopolymer was tested in submerged culture of M. pilosus. The highest amount of exo-biopolymer (13.9 mg/mL) was obtained in a medium containing rice bran as an only carbon source followed by media with additional maltose and sucrose (13.8 and 13.7 mg/mL, respectively). The addition of peptone resulted in the production of high amount of exo-biopolymer (15.1 mg/mL), meanwhile the addition of ammonium chloride resulted in 264.0 µg/mL of glucosamine content. Among eight different kinds of inorganic salts tested, potassium phosphate (0.1%) was the most effective inorganic salt for the mycelial growth and exo-biopolymer production. Therefore the optimal medium composition was as follows (g/L): 20 g of rice bran, 5 g of peptone, and 1 g of KH2PO4. The optimal culture pH and time for mycelial growth and exo-biopolymer production was pH 5.0 and 25°C, respectively. The maximum exo-biopolymer (20.1 mg/mL) was observed at the fourth day of cultivation. Exo-biopolymer, a crude polysaccharide fraction, mainly contained neutral sugar (81.8%) with considerable amounts of uronic acid (18.2%). Component sugar analysis showed that the active fraction consisted mainly of arabinose, galactose, glucose, which was digested from starch of rice bran during cultivation, and uronic acid (molar ratio; 0.8:1.0:0.7:0.8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inoue, K., Mukaiyama, Y., Tsuji, K., et al. (1995), Jpn. J. Nutr. 53, 263–271.

    Google Scholar 

  2. Tsuji, K., Ichikawa, T., Tanabe, N., Abe, S., Tarui, S., and Nakagawa, Y. (1992), Nippon Nogeikagaku Kaishi 66, 1241–1246.

    Google Scholar 

  3. Endo, A. (1985), J. Medicinal. Chem. 28, 401–405.

    Article  CAS  Google Scholar 

  4. Araki, J., Yamaguchi, F., and Nakadai, T. (1998), J. Jpn. Soy Sauce Res. Inst. 24, 127–132.

    CAS  Google Scholar 

  5. Juziova, P., Martinkova, L., and Kren, V. (1996), J. Ind. Microbiol. 16, 163–170.

    Google Scholar 

  6. Lin, C. Y. (1973), J. Ferment. Technol. 51, 407–414.

    CAS  Google Scholar 

  7. Farrell, D. J. (1994), World’s Poult. Sci. J. 50, 115–131.

    Article  Google Scholar 

  8. Indira, T. N., Hemavathy, J., Khatoon, S., Krishna, A. G., and Bhattacharya, S. (2000), J. Food Eng. 43, 83–90.

    Article  Google Scholar 

  9. Warren, B. G. and Farrell, D. J. (1991), Anim. Feed Sci. Tech. 34, 323–347.

    Article  Google Scholar 

  10. Abdul-Hamid, A. and Luan, Y. S. (2000), Food Chem. 68, 15–19.

    Article  CAS  Google Scholar 

  11. Ebringerova, A., Hromadkova, I., and Berth, G. (1994), Carbohydr. Res. 264, 97–109.

    Article  CAS  Google Scholar 

  12. Herscowitz, B. H., Holden, H. T., Bellanti, J. A., and Ghaffar, A. (1981), in Manual of Macrophage Methodology: Collection, Characterization, and Function (Herscowitz, B. H., ed.), Marcel Dekker, New York, pp. 7–10.

    Google Scholar 

  13. Suzuki, I., Tanaka, H., Kinoshita, A., Oikawa, S., Osawa, M., and Yadomae, T. (1990), Int. J. Immunopharmac. 12, 675–684.

    Article  CAS  Google Scholar 

  14. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956), Anal. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  15. Blumenkrantz, N. and Asboe-Hansen, G. (1973), Anal. Biochem. 54, 484–489.

    Article  CAS  Google Scholar 

  16. Bradford, M. M. (1976), Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  17. Johnes, T. M. and Albersheim, P. (1972), Plant Physiol. 49, 926–936.

    Article  Google Scholar 

  18. Zhao, J. F., Kiyohara, H., Yamada, H., Takemoto, N., and Kawamura, H. (1991), Carbohyd. Res. 219, 149–172.

    Article  CAS  Google Scholar 

  19. Swift, M. J. (1973), Soil. Biol. Biochem. 5, 321–332.

    Article  CAS  Google Scholar 

  20. Yoshizawa, K., Momose, H., and Hasuo, T. (1981), J. Brewery Soc. Japan 76, 280–283.

    Google Scholar 

  21. Johns, M. R. and Stuart, D. M. (1991), J. Ind. Microbiol. 8, 23–28.

    Article  CAS  Google Scholar 

  22. Lin, C. F. (1973), J. Ferm. Technol. 51, 407–414.

    CAS  Google Scholar 

  23. Lin, T. F. and Demain, A. L. (1991), Appl. Microbiol. Biot. 36, 70–75.

    Article  CAS  Google Scholar 

  24. Lin, T. F. and Demain, A. L. (1993), J. Ind. Microb. 162, 114–119.

    Google Scholar 

  25. Garraway, M. O. and Evans, R. C. (1991), in Fungal Nutrition and Physiology (Garraway, M. O., ed.), John Wiley and Sons, New York, pp. 71–221.

    Google Scholar 

  26. Pateman, J. A. and Kinghorn, J. R. (1976), in The Filamentous Fungi, vol. 2 (Smith, J. E. and Berry, D. R., eds.), John Wiley and Sons, New York, pp. 159–237.

    Google Scholar 

  27. Chisti, Y. and Moo-Young M. (1991), in Biotechnology: the science and the business (Moses, M. and Cape, R. E., eds.), Harwood Academic Publishers, New York, pp. 167–209.

    Google Scholar 

  28. Park, K. S., Park, S., Jung, I. C., Ha, H. C., Kim, S. H., and Lee, J. S. (1994), Kor. J. Mycol. 22, 184–189.

    CAS  Google Scholar 

  29. Lee, J. H., Cho, S. M., Ko, K. S., and Yoo, I. D. (1995), Kor. J. Mycol. 23, 325–331.

    CAS  Google Scholar 

  30. Clarke, A. E., Anderson, R. L., and Stone, B. A. (1979), Phytochem 18, 521–540.

    Article  CAS  Google Scholar 

  31. Albersheim, P., An, J., Freshour, G., et al. (1994), Biochem. Soc. Transac. 22, 374–378.

    CAS  Google Scholar 

  32. Park, K. S., Park, S., Jung, I. C., Ha, H. C., Kim, S. H., and Lee, J. S. (1994), Kor. J. Mycol. 22, 184–189.

    CAS  Google Scholar 

  33. Lee, J. H., Cho, S. M., Ko, K. S., and Yoo, I. D. (1995), Kor. J. Mycol. 23, 325–331.

    CAS  Google Scholar 

  34. Bae, J. T., Sinha, J., Park, J. P., Song, C. H., and Yun, J. W. (2000), J. Microbiol. Biotechnol. 10, 482–487.

    CAS  Google Scholar 

  35. Park, J. P., Kim, S. W., Hwang, H. J., and Yun, J. W. (2001), Lett. Appl. Microbiol. 33, 76–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, K.W., Kim, Y.S., Shin, K.S. et al. Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus . Appl Biochem Biotechnol 126, 35–48 (2005). https://doi.org/10.1007/s12010-005-0004-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-005-0004-6

Index Entries

Navigation