Advertisement

Applied Biochemistry and Biotechnology

, Volume 119, Issue 3, pp 241–277 | Cite as

Early phase process scale-up challenges for fungal and filamentous bacterial cultures

  • B. H. JunkerEmail author
  • M. Hesse
  • B. Burgess
  • P. Masurekar
  • N. Connors
  • A. Seeley
Original Articles

Abstract

Culture pelleting and morphology has a strong influence on process productivity and success for fungal and filamentous bacterial cultures. This impact is particularly evident with early phase secondary metabolite processes with limited process definition. A compilation of factors affecting filamentous or pelleting morphology described in the literature indicates potential leads for developing process-specific control methodologies. An evaluation of the factors mediating citric acid production is one example of an industrially important application of these techniques. For five model fungal and filamentous bacterial processes in an industrial fermentation pilot plant, process development strategies were developed and effectively implemented with the goal of achieving reasonable fermentation titers early in the process development cycle. Examples of approaches included the use of additives to minimize pelleting in inoculum shake flasks, the use of large-volume frozen bagged inoculum obtained from agitated seed fermentors, and variations in production medium composition and fermentor operating conditions. Results were evaluated with respect to productivity of desired secondary metabolites as well as process scalability. On-line measurements were utilized to indirectly evaluate the cultivation impact of changes in medium and process development. Key laboratory to pilot plant scale-up issues also were identified and often addressed in subsequent cultivations.

Index Entries

Morphology pellet fermentation scale-up Aspergillus Sordaria Streptomyces Chalara 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones, P., Moore, D., and Trinci, A. P. J. (1988), J. Gen. Microbiol. 134, 235–240.Google Scholar
  2. 2.
    Calam, C. T. (1976), Process Biochem. 11(7), 7–12.Google Scholar
  3. 3.
    Gehrig, I., Bart, H.-J., Anke, T., and Germerdonk, R. (1998), Biotechnol. Bioeng. 59(5), 525–533.CrossRefGoogle Scholar
  4. 4.
    Hotop, S., Möller, J., Niehoff, J., and Schügerl, K. (1993), Process Biochem. 28, 99–104.CrossRefGoogle Scholar
  5. 5.
    Pallerla, S. and Chambers, R. P. (1997), Bioresour. Technol. 60(1), 1–8.CrossRefGoogle Scholar
  6. 6.
    Metz, B. and Kossen, N. W. F. (1977), Biotechnol. Bioeng. 19, 781–799.CrossRefGoogle Scholar
  7. 7.
    Schugerl, K., Wittler, R., and Lorenz, T. (1983), Trends Biotechnol. 1(4), 120–123.CrossRefGoogle Scholar
  8. 8.
    Whitaker, A. and Long, P. A. (1973), Process Biochem. 11, 27–31.Google Scholar
  9. 9.
    Whitaker, A. (1992), Appl. Biochem. Biotechnol. 32, 23–35.CrossRefGoogle Scholar
  10. 10.
    Lawton, P., Whitaker, A., Odell, D., and Stowell, J. D. (1989), Can. J. Microbiol. 35, 881–889.CrossRefGoogle Scholar
  11. 11.
    Papagianni, M. (2004), Biotechnol. Adv. 22, 189–259.CrossRefGoogle Scholar
  12. 12.
    van Suijdam, J. C., Kossen, N. W. F., and Paul, P. G. (1980), Eur. J. Appl. Microbiol. Biotechnol. 10, 211–221.CrossRefGoogle Scholar
  13. 13.
    Jüsten, P., Paul, G. C., Nienow, A. W., and Thomas, C. R. (1996), Biotechnol. Bioeng. 52, 672–684.CrossRefGoogle Scholar
  14. 14.
    Bujalski, W., Cox, P. W., Thomas, C. R., Nienow, A. W., Preide, M. A., and Viesturs, U. E. (1997), in Bioreactor/Process Fluid Dynamics, BHR Group Conference Series, Publication No. 25, Nienow, A. W., ed., Mechanical Engineering Publications, London, pp. 9–25.Google Scholar
  15. 15.
    Tucker, K. G. and Thomas, C. R. (1994), Biotechnol. Techniques 8(3), 153–156.CrossRefGoogle Scholar
  16. 16.
    Braun, S. and Vecht-Lifshitz, S. E. (1991), Trends Biotechnol. 9, 63–68.Google Scholar
  17. 17.
    Fujita, M., Iwahori, K., Tatsuta, S., and Yamakawa, K. (1994), J. Ferment. Bioeng. 78(5), 368–373.CrossRefGoogle Scholar
  18. 18.
    Smith, G. M. and Calam, C. T, (1980), Biotechnol. Lett. 2(6), 261–266.CrossRefGoogle Scholar
  19. 19.
    Tuttobello, R. and Mill, P. J. (1961), Biochem. J. 79, 51–57.Google Scholar
  20. 20.
    Archer, D. B., MacKenzie, D. A., and Ridout, M. J. (1995), Appl. Microbiol. Biotechnol. 44, 157–160.Google Scholar
  21. 21.
    Takahashi, J., Abekawa, G., and Yamada, K. (1960), J. Agric. Chem. Soc. Japan 34, 1043–1045.Google Scholar
  22. 22.
    Elmayergi, H., Scharer, J. M., and Young, M. M. (1973), Biotechnol. Bioeng. 15, 845–849.CrossRefGoogle Scholar
  23. 23.
    Cui, Y. Q., van der Lans, R. G. J. M., and Luyben, K. C. A. M. (1997), Biotechnol. Bioeng. 55(5), 715–726.CrossRefGoogle Scholar
  24. 24.
    Cui, Y. Q., van der Lans, R. G. J. M., Giuseppin, M. L. F., and Luyben, K. C. A. M. (1998), Enzyme Microb. Technol. 23, 157–167.CrossRefGoogle Scholar
  25. 25.
    Moore, J. and Bushell, M. E. (1997), Mycol. Res. 101(10), 1237–1241.CrossRefGoogle Scholar
  26. 26.
    Sinha, J., Bae, J. T., Park, J. P., Kim, K. H., Song, C. H., and Yun, J. W. (2001), Appl. Microbiol. Biotechnol. 56, 88–92.CrossRefGoogle Scholar
  27. 27.
    Berovic, M., Cimerman, A., Steiner, W., and Koloini, T. (1991), Appl. Microbiol. Biotechnol. 34, 579–581.CrossRefGoogle Scholar
  28. 28.
    Vecht-Lifshitz, S. E., Sasson, Y., and Braun, S. (1992), J. Appl. Bacteriol. 72, 195–200.Google Scholar
  29. 29.
    Belmar-Beiny, M. T. and Thomas, C. R. (1991), Biotechnol. Bioeng. 37(5), 456–462.CrossRefGoogle Scholar
  30. 30.
    Li, Z. J., Shukla, V., Wenger, K. S., Fordyce, A. P., Pedersen, A. G., and Marten, M. R. (2002), Biotechnol Prog. 18, 437–444.CrossRefGoogle Scholar
  31. 31.
    Snell, R. L. and Schweiger, L. B. (1949), US patent 2,492,667.Google Scholar
  32. 32.
    Schweiger, L. B. and Snell, R. L. (1949), US patent 2,476,159.Google Scholar
  33. 33.
    Martin, S. M. and Waters, W. R. (1952), Ind. Eng. Chem. 44, 2229–2233.CrossRefGoogle Scholar
  34. 34.
    Kubicek, C. P. and Röhr, M. (1977), Eur. J. Appl. Microbiol. Biotechnol. 4, 167–175.Google Scholar
  35. 35.
    Kubicek, C. P. and Röhr, M. (1978), Eur. J. Appl. Microbiol. Biotechnol. 5, 263–271.CrossRefGoogle Scholar
  36. 36.
    Kubicek, C. P. and Röhr, M. (1985), Appl. Environ. Microbiol. 50(5), 1336–1338.Google Scholar
  37. 37.
    Kubicek, C. P., Zehentgruber, O., El-Kalak, H., and Röhr, M. (1980), Eur. J. Appl. Microbiol. Biotechnol. 9, 101–115.CrossRefGoogle Scholar
  38. 38.
    Röhr, M., Zehentgruber, O., and Kubicek, C. P. (1981), Biotechnol. Bioeng. 23, 2433–2445.CrossRefGoogle Scholar
  39. 39.
    Nowakowska-Waszczuk, A., Rubaj, E., Matusiak, B., and Kosiek, E. (1984), Appl. Microbiol. Biotechnol. 20, 416–418.CrossRefGoogle Scholar
  40. 40.
    Röhr, M., Kubicek, C. P., Zehentgruber, O., and Orthofer, R. (1987), Appl. Microbiol. Biotechnol. 27, 235–239.CrossRefGoogle Scholar
  41. 41.
    Roukas, T. (1991), J. Ind. Microbiol. 7(30), 221–225.CrossRefGoogle Scholar
  42. 42.
    Yigitoglu, M. (1992), J. Islamic Acad. Sci. 5(2), 100–106.Google Scholar
  43. 43.
    Kim, K. S., Yoo, Y. J., and Kim, M. H. (1995), J. Ferment. Bioeng. 79(6), 555–559.CrossRefGoogle Scholar
  44. 44.
    Campeanu, G., Pele, M., and Campeanu, M. (1998), Roum. Biotechnol. Lett. 3(3), 193–200.Google Scholar
  45. 45.
    Wongwicharn, A., McNeil, B., and Harvey, L. M. (1999), Enzyme Microb. Technol. 24, 489–497.CrossRefGoogle Scholar
  46. 46.
    Blom, R. H., Pfeifer, V. F., Moyer, A. J., Traufler, D. H., Conway, H. F., Crocker, C. K., Farison, R. E., and Hannibal, D. V. (1952), Ind. Eng. Chem. 44(2), 435–440.CrossRefGoogle Scholar
  47. 47.
    Perlman, D. (1949), Econ. Bot. 3(4), 360–374.Google Scholar
  48. 48.
    Prescott, S. C. and Dunn, C. G. (1959), in Industrial Microbiology, 3rd ed., Dunn, C. G., ed., McGraw-Hill, New York, pp. 533–577.Google Scholar
  49. 49.
    Lockwood, L. B. and Schweiger, L. B. (1967), in Microbial Technology, Peppler, H. J., ed., Reinhold Publishing, New York, pp. 183–199.Google Scholar
  50. 50.
    Takahashi, J., Hidaka, H., and Yamada, K. (1965), Agric. Biol. Chem. 29(4), 331–336.Google Scholar
  51. 51.
    Buckland, B., Brix, T., Fastert, H., Gbewonyo, K., Hunt, G., and Jain, D. (1985), Bio/Technology 3, 982–988.CrossRefGoogle Scholar
  52. 52.
    Junker, B., Brix, T., Lester, M., Kardos, P., Adamca, J., Lynch, J., Schmitt, J., and Salmon, P. (2003), Biotechnol. Prog. 19, 693–705.CrossRefGoogle Scholar
  53. 53.
    Junker, B., Seeley, A., Lester, M., Kovatch, M., Schmitt, J., Borysewicz, S., Lynch, J., Zhang, J., and Greasham, R. (2002), Biotechnol. Bioeng. 79(6), 628–640.CrossRefGoogle Scholar
  54. 54.
    Dombrowski, A. W., Bills, G., Sabnis, G., Koupal, L., Meyer, R., Ondeyka, J., Giacobbe, R., Monaghan, R., and Lingham, R. (1992), J. Antibiot. 45, 671–678.Google Scholar
  55. 55.
    Feighner, S. D., Salituro, G., Smith, J. L., and Tsou, N. N. (1994), US patent 5,350,763.Google Scholar
  56. 56.
    Bills, G., Dombrowski, A., Horn, W., Jansson, R., Rattray, M., Schmatz, D., and Schwartz, R. (1997), PCT Int. Appl. WO 9811891.Google Scholar
  57. 57.
    Shastry, M., Nielsen, J., Ku, T., Hsu, M.-J., Liberator, P., Anderson, J., Schmatz, D., and Justice, M. C. (2001), Microbiology 147, 383–390.Google Scholar
  58. 58.
    Barrett, D. (2002), Biochim. Biophys. Acta 1587, 224–233.Google Scholar
  59. 59.
    Royce, P. N. (1992), Biotechnol. Bioeng. 40, 1129–1138.CrossRefGoogle Scholar
  60. 60.
    Junker, B. H., Mann, Z., and Hunt, G. (2000), Appl. Biochem. Biotechnol. 89, 67–83.CrossRefGoogle Scholar
  61. 61.
    Johansen, C. L., Coolen, L., and Hunik, J. H. (1998), Biotechnol. Prog. 14, 233–240.CrossRefGoogle Scholar
  62. 62.
    Papagianni, M., Mattey, M., and Kristiansen, B. (1999), Process Biochem. 35, 359–366.CrossRefGoogle Scholar
  63. 63.
    Tamura, S., Park, Y., Toriyama, M., and Okabe, M. (1997), J. Ferment. Bioeng. 83(6), 523–528.CrossRefGoogle Scholar
  64. 64.
    Qazi, G. N., Gaud, C. N., Chaturvedi, S. K., Chopra, C. L., Trager, M., and Onken, U. (1990), J. Ferment. Bioeng. 69(1), 72–74.CrossRefGoogle Scholar
  65. 65.
    Tucker, K. G., Patel, D., and Thomas, C. R. (1994), IChemE Res. Event 1, 107–109.Google Scholar
  66. 66.
    Mitard, A. and Riba, J. P. (1988), Biotechnol. Bioeng. 32, 835–840.CrossRefGoogle Scholar
  67. 67.
    Cui, Y. Q., van der Lans, R. G. J. M., and Luyben, K. C. A. M. (1998), Biotechnol. Bioeng. 57(4), 409–419.CrossRefGoogle Scholar
  68. 68.
    Tucker, K. G. and Thomas, C. R. (1992), Biotechnol. Lett. 14(11), 1071–1074.CrossRefGoogle Scholar
  69. 69.
    Paul, K. R., Paul, G. C., and Thomas, C. R. (1995), IChemE Res. Event 2, 980–982.Google Scholar
  70. 70.
    Vecht-Lifshitz, S. E., Magdassi, S., and Braun, S. (1990), Biotechnol. Bioeng. 35, 890–896.CrossRefGoogle Scholar
  71. 71.
    Gomez, R., Schnabel, I., and Garrido, J. (1988), Enzyme Microb. Technol. 10, 188–191.CrossRefGoogle Scholar
  72. 72.
    Trinci, A. P. J. (1970), Arch. Mikrobiol. 73, 353–367.CrossRefGoogle Scholar
  73. 73.
    Paul, G. C. and Thomas, C. R. (1995), IChemE Res. Event 2, 974–976.Google Scholar
  74. 74.
    Choi, D. B., Park, Y. S., and Okabe, M. (1998), J. Ferment. Bioeng. 86, 413–417.CrossRefGoogle Scholar
  75. 75.
    Pirt, S. J. and Callow, D. S. (1959), Nature 184(4683), 307–310.CrossRefGoogle Scholar
  76. 76.
    El-Enshasy, H., Hellmuth, K., and Rinas, U. (1999), Appl. Biochem. Biotechnol. 81(1), 1–11.CrossRefGoogle Scholar
  77. 77.
    Darby, R. T. and Mandels, G. R. (1954), Mycologia 46, 276–287.Google Scholar
  78. 78.
    Choi, D. B., Park, E. Y., and Okabe, M. (2000), Biotechnol. Prog. 16, 525–532.CrossRefGoogle Scholar
  79. 79.
    Pera, L. M. and Callieri, D. A. (1999), J. Microbiol. Biotechnol. 15(5), 647–649.CrossRefGoogle Scholar
  80. 80.
    Chopra, C. L., Qazi, G. N., Chaturvedi, S. K., Gaind, G. N., and Atal, C. K. (1981), J. Chem. Tech. Biotechnol. 31, 122–126.CrossRefGoogle Scholar
  81. 81.
    Kobayashi, H. and Suzuki, H. (1972), J. Ferment. Technol. 50(12), 835–843.Google Scholar
  82. 82.
    Clark, D. S. (1962), Can. J. Microbiol. 8, 133–136.CrossRefGoogle Scholar
  83. 83.
    Choudhary, A. Q. and Pirt, S. J. (1965), J. Gen. Microbiol. 41, 99–107.Google Scholar
  84. 84.
    Qadeer, M. A. and Abdullah, J. S. (1971), Pakistan J. Biochem. 4(1), 33–38.Google Scholar
  85. 85.
    Chen, Z.-W., Ku, C.-H., Weng, C.-J., and Chen, T.-L. (1997), Appl. Biochem. Biotechnol. 67, 249–258.Google Scholar
  86. 86.
    Trinci, A. P. J. (1983), Trans. Br. Mycol. Soc. 81, 408–412.CrossRefGoogle Scholar
  87. 87.
    Olsvik, E., Tucker, K. G., Thomas, C. R., and Kristiansen, B. (1993), Biotechnol. Bioeng. 42, 1046–1052.CrossRefGoogle Scholar
  88. 88.
    Papagianni, M., Mattey, M., and Kristiansen, B. (1994), Biotechnol. Lett. 16(9), 929–934.CrossRefGoogle Scholar
  89. 89.
    van Suijdam, J. C. and Metz, B. (1981), Biotechnol. Bioeng. 23, 111–148.CrossRefGoogle Scholar
  90. 90.
    Galbraith, J. C. and Smith, J. E. (1969), Trans. Br. Mycol. Soc. 52(2), 237–246.Google Scholar
  91. 91.
    Ho, C. S. and Smith, M. D. (1986), Biotechnol. Bioeng. 28(5), 668–677.CrossRefGoogle Scholar
  92. 92.
    McIntyre, M. and McNeil, B. (1997), Enzyme Microb. Technol. 21, 479–483.CrossRefGoogle Scholar
  93. 93.
    Kamal, K. P., Verma, U. M., Nag, A. K., and Singh, S. P. (1999), Asian J. Chem. 11(3), 1020–1022.Google Scholar
  94. 94.
    Cox, P. W. and Thomas, C. R. (1994), IchemE Res. Event 1, 82–84.Google Scholar
  95. 95.
    Vanags, J. J., Priede, M. A., Are, R. J., and Viesturs, U. E. (1992), Proceedings of the Latvian Academy of Sciences, no. 6, pt. B, Riga, Latvia, pp. 60–64.Google Scholar
  96. 96.
    Gyamerah, M., Merichetti, G., Adedayo, O., Scharer, J. M., and Moo-Young, M. (2003), Appl. Microbiol. Biotechnol. 60, 403–407.Google Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • B. H. Junker
    • 1
    • 2
    Email author
  • M. Hesse
    • 1
    • 2
  • B. Burgess
    • 1
    • 2
  • P. Masurekar
    • 1
    • 2
  • N. Connors
    • 1
    • 2
  • A. Seeley
    • 1
    • 2
  1. 1.Fermentation Development and OperationsMerck Research LaboratoriesRahway
  2. 2.Human and Animal Infectious DiseasesMerck Research LaboratoriesRahway

Personalised recommendations