Applied Biochemistry and Biotechnology

, Volume 119, Issue 3, pp 209–228 | Cite as

RNA synthetic activity of glutamate dehydrogenase

Determination of enzyme purity, RNA characteristics, and deamination/amination ratio
  • Godson O. OsujiEmail author
  • Jonas Konan
  • Gitonga M’Mbijjewe
Original Articles


The activity of glutamate dehydrogenase (GDH), an important enzyme in carbon and nitrogen metabolism, is routinely assayed by photometry. The RNA synthetic activity of the enzyme provides new technologies for assaying its activity. The enzyme was made to synthesize RNAs in the absence of DNA and total RNA but with different mixes of the four nucleoside triphosphates (NTPs) in order to investigate the RNA characteristics. RNase VI (hydrolyzes base-paired residues) digested the poly (U,A) RNA completely because the U and A residues were evenly distributed to produce many base-paired regions. Therefore, the synthesis of RNA by GDH was by random addition of NTPs. The RNA synthetic activity of the enzyme was at least 50-fold more active in the deamination than in the amination direction, thus providing a robust technology forassay of the enzyme’s activity. cDNAs prepared from the RNAs were subjected to restriction fragment differential display polymerase chain reaction analyses. Sequencing of the cDNA fragments showed that some of the RNA synthesized by GDH shared sequence homology with total RNA. Database searches showed that the RNA fragments shared sequence homologies with the G proteins, adenosine triphosphatase, calmodulin, phosphoenol pyruvate (PEP) carboxylase, and PEP carboxykinase, thus explaining the molecular mode of their functions in signal transduction.

Index Entries

Glutamate dehydrogenase α-ketoglutarate differential display polymerase chain reaction nucleotide chromatography deamination amination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Laere, A. J. (1988), J. Gen. Microbiol. 134, 1597–1601.Google Scholar
  2. 2.
    Yeung, A. T., Turner, K. J., Bascomb, N. F., and Schmidt, R. R. (1981), Anal. Biochem. 110, 216–228.CrossRefGoogle Scholar
  3. 3.
    Loulakakis, K. A. and Roubelakis-Angelakis, K. A. (1996), Physiol. Plant 96, 29–35.CrossRefGoogle Scholar
  4. 4.
    Stewart, G. R., Shatilov, V. R., Turnbull, M. H., Robinson, S. A., and Goodall, R. (1995), Aust. J. Plant Physiol. 22, 805–809.CrossRefGoogle Scholar
  5. 5.
    Frieden, C. (1959), J. Biol. Chem. 234, 2891–2896.Google Scholar
  6. 6.
    Robinson, S. A., Stewart, G. R., and Phillips, R. (1992), Plant Physiol. 98, 1190–1195.Google Scholar
  7. 7.
    Bergstrom, D. W., Monreal, C. M., Millette, J. A., and King, D. J. (1998), Soil Sci. Soc. Am. J. 62, 1302–1308.CrossRefGoogle Scholar
  8. 8.
    Cammaerts, D. and Jacobs, M. (1985), Planta 163, 517–526.CrossRefGoogle Scholar
  9. 9.
    Osuji, G. O. and Madu, W. C. (1996), Phytochemistry 42, 1491–1498.CrossRefGoogle Scholar
  10. 10.
    Osuji, G. O. and Madu, W. C. (1995), Phytochemistry 39, 495–503.CrossRefGoogle Scholar
  11. 11.
    Osuji, G. O., Haby, V. A., Beyene, A., Madu, W. C., and Mangaroo, A. S. (1997/98), Biol. Plant 40, 389–398.CrossRefGoogle Scholar
  12. 12.
    Osuji, G. O. (1997), Soil Sci. Plant Nutr. 43, 1159–1164.Google Scholar
  13. 13.
    Osuji, G. O., Reyes, J. C., and Mangaroo, A. S. (1998), J. Agric. Food Chem. 46, 2395–2401.CrossRefGoogle Scholar
  14. 14.
    West, S. M. and Price, N. C. (1988), Biochem J. 251, 135–139.Google Scholar
  15. 15.
    Frieden, C. (1971), Annu. Rev. Biochem. 40, 653–696.CrossRefGoogle Scholar
  16. 16.
    Osuji, G. O., Braithwaite, C., Pointer, R., and Reyes, J. (1999), J. Agric. Food Chem. 47, 3345–3351.CrossRefGoogle Scholar
  17. 17.
    Osuji, G. O., Mangaroo, A. S., Reyes, J., Bulgin, A., and Wright, V. (2003/4), Biol. Plant 47, 45–52.CrossRefGoogle Scholar
  18. 18.
    Osuji, G. O., Braithwaite, C., Fordjour, K., Madu, W. C., Beyene, A., Roberts, P. S., and Wright, V. (2003), Prep. Biochem. Biotechnol. 33, 13–28.CrossRefGoogle Scholar
  19. 19.
    Loyola-Vargas, V. M. and De Jimenez, E. S. (1984), Plant Physiol. 76, 536–540.Google Scholar
  20. 20.
    Grierson, D., Slater, A., Speirs, J., and Tucker, G. A. (1985), Planta 163, 263–271.CrossRefGoogle Scholar
  21. 21.
    Abts, H. F., Wels, T., Breuhahn, K., and Ruzicka, T. (2000), in Stress Response: Methods and Protocols, Keyse, S. M., ed., Humana, Totowa, NJ, pp. 340–366.Google Scholar
  22. 22.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zheng, Z., Miller, W., and Lipman, D. J. (1997), Nucleic Acids Res. 25, 3389–3402.CrossRefGoogle Scholar
  23. 23.
    Osuji, G. O., Madu, W. C., Braithwaite, C., Beyene, A., Roberts, P. S., Bulgin, A., and Wright, V. (2003/4), Biol. Plant 47, 195–202.CrossRefGoogle Scholar
  24. 24.
    Meyersfeld, D. R. and Coetzer, T. L. (2003), BioTechniques 34, 270–272.Google Scholar
  25. 25.
    Negishi, M. and Katoh, H. (2002), J. Biochem. 132, 157–166.Google Scholar
  26. 26.
    Sternweis, P. C. (1996), in G Proteins in Signal Transduction, Heldin, C.-H. and Purton, M., eds., Chapman & Hall, London, pp. 285–301.Google Scholar
  27. 27.
    Harden, T. K., Boyer, J. L., and Dougherty, R. W. (2001), J. Recep. Signal Transduct. 21, 167–190.CrossRefGoogle Scholar
  28. 28.
    Bethke, P. C. and Jones, R. L. (1994), Plant Cell 6, 277–285.CrossRefGoogle Scholar
  29. 29.
    Mikkelsen, J. D., Berglund, L., Nielsen, K. K., Christiansen, H., and Bojsen, K. (1992), in Advances in Chitin and Chitosan, Brine, C. J., Sandford, P. A., and Zikakis, J. P., eds., Elsevier, New York, pp. 344–353.Google Scholar
  30. 30.
    Luttge, U. (1998), in Photosynthesis: A Comprehensive Treatise, Raghavendra, A. S., ed., Cambridge University Press, Cambridge, UK, pp. 136–149.Google Scholar
  31. 31.
    Ameziane, R., Bernhard, K., and Lightfoot, D. (2000), Plant Soil 221, 47–57.CrossRefGoogle Scholar
  32. 32.
    Osuji, G. O. and Madu, W. C. (1997), Can. J. Bot. 75, 1070–1078.CrossRefGoogle Scholar
  33. 33.
    Osuji, G. O. and Madu, W. C. (1997), Phytochemistry 46, 817–825.CrossRefGoogle Scholar
  34. 34.
    Imamoto, F. (1973), J. Mol. Biol. 74, 113–136.CrossRefGoogle Scholar
  35. 35.
    Osuji, G. O. and Braithwaite, C. (1999), J. Agric. Food Chem. 47, 3332–3344.CrossRefGoogle Scholar
  36. 36.
    Carrington, J. C. and Ambros, V. (2003), Science 301, 336–338.CrossRefGoogle Scholar
  37. 37.
    Semizarov, D., Frost, L., Sarthy, A., Kroeger, P., Halbert, D. N., and Fesik, S. W. (2003), Proc. Natl. Acad. Sci. USA 100, 6347–6352.CrossRefGoogle Scholar
  38. 38.
    Osuji, G. O., Haby, V. A., Chessman, D. J., and Leonard, A. T. (2004), Photosynthetica 42, 307–312.CrossRefGoogle Scholar
  39. 39.
    Gesteland, R. F., Cech, T. R., and Atkins, J. F. (1998), The RNA World, CSHL Press, Cold Spring Harbor, New York.Google Scholar
  40. 40.
    Robinson, S. A., Slade, A. P., Fox G. G., Phillips, R., Ratcliffe, R. G., and Stewart, G. R. (1990), Plant Physiol. 95, 501–516.Google Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Godson O. Osuji
    • 1
    Email author
  • Jonas Konan
    • 1
  • Gitonga M’Mbijjewe
    • 1
  1. 1.Cooperative Agricultural Research CenterPrairie View A&M University, Texas A&M University SystemPrairie View

Personalised recommendations