Applied Biochemistry and Biotechnology

, Volume 119, Issue 3, pp 195–208 | Cite as

Denitrification in presence of benzene, toluene, and m-xylene

Kinetics, mass balance, and yields
  • A. Peña-Calva
  • A. Olmos-Dichara
  • G. Viniegra-González
  • F. M. Cuervo-López
  • J. Gómez
Original Articles


Denitrification of the electron donors toluene-C(15–100 mg/L), m-xylene-C (15–70 mg/L), benzene-C (5–25 mg/L), and acetate-C as experimental reference (50–140 mg/L) was carried out in batch culture. An initial concentration of 1.1±0.15 g of volatile suspended solids/L of denitrifying sludge without previous exposure to aromatic compounds was used as inoculum. The results showed toluene and nitrate consumption efficiency (E T and E N′ respectively) of 100%. Toluene was completely mineralized (oxidized) to CO2. In all cases, the N2N2) and HCO 3 yields (γHCO3) were 0.97±0.01 and 0.8±0.05, respectively. The consumption efficiency (E x ) of m-xylene (53±5.7%) was partial. The γN2 and γHCO3 were 0.96±0.01 and 0.86±0.02, respectively. Benzene was not consumed under denitrifying conditions. The specific consumption rates of toluene (q T ) and m-xylene (q X ) were lower than that of acetate (q A ). The differences in specific consumption rates were probably owing to the negative effect of benzene, toluene, and isomers of xylene on the cell membrane.

Index Entries

Toluene m-xylene benzene denitrification kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evans, P. J., Dzung, T., Mang, D. T., Kim, K. S., and Young, Y. L. (1991), Appl. Environ. Microbiol. 57, 1139–1145.Google Scholar
  2. 2.
    Gersberg, R., Dawsey, W. J., and Ritgeway, H. F. (1989), in Petroleum Contaminated Soils, vol. 2, Lewis Publishers, Chelsea, MI, pp. 211–217.Google Scholar
  3. 3.
    Dean, B. (1978), Mutat. Res. 47, 75–97.Google Scholar
  4. 4.
    Reinhard, M., Shang, S., Kitanidis, P. K., Orwin, E., Hopkins, G. D., and Lebron, C. A. (1997), Environ. Sci. Technol. 31, 28–36.CrossRefGoogle Scholar
  5. 5.
    Edwards, E. A. and Garbic-Galic, D. (1994), Appl. Environ. Microbiol. 60, 313–322.Google Scholar
  6. 6.
    Elmén, J., Pan, W., Leung, S. Y., Magyarosy, A., and Keasling, J. D. (1997), Biotechnol. Bioeng. 55, 82–90.CrossRefGoogle Scholar
  7. 7.
    Phelps, C. D. and Young, L. Y. (1999), Biodegradation 10, 15–25.CrossRefGoogle Scholar
  8. 8.
    Gomez, J., Méndez, R., and Lema, J. (1996), Appl. Biochem. Biotechnol. 57/58, 869–876.Google Scholar
  9. 9.
    Cuervo-López, F. M., Martínez, F., Gutiérrez-Rojas, M., Noyola R. A., and Gómez, J. (1999), Water Sci. Technol. 40, 123–130.CrossRefGoogle Scholar
  10. 10.
    APHA. (1995), Standard Methods for the Examination of Water and Wastewater, 19th ed., American Public Health Association, Washington, DC.Google Scholar
  11. 11.
    Evans, P. J., Mang, D. T., and Young, Y. L. (1991), Appl. Environ. Microbiol. 57, 450–454.Google Scholar
  12. 12.
    Schocher, R. J., Seyfried, B., Vazquez, F., and Zeyer, J. (1991), Arch. Microbiol. 157, 7–12.CrossRefGoogle Scholar
  13. 13.
    Alvarez, P. J. J. and Vogel, T. M. (1995), Water Sci. Technol. 31(1), 15–28.CrossRefGoogle Scholar
  14. 14.
    Häner, A., Höhener, P., and Zeyer, J. (1995), Appl. Environ. Microbiol. 61, 3185–3188.Google Scholar
  15. 15.
    Hutchins, S. R., Sewell, G. W., Kovacs, D. A., and Smith, A. (1991), Appl. Environ. Microbiol. 57(8), 2403–2407.Google Scholar
  16. 16.
    Ball, H. A. and Reinhhard, M. (1996), Environ. Toxicol. Chem. 15, 114–122.CrossRefGoogle Scholar
  17. 17.
    Kazumi, J., Caldwell, M. E., Suflita, J. M., Loveley, D. R., and Young, Y. L. (1997), Environ. Sci. Technol. 31, 813–818.CrossRefGoogle Scholar
  18. 18.
    Akunna, J. C., Bizeau, C., and Moletta, R. (1993), Water Res. 27(8), 1303–1312.CrossRefGoogle Scholar
  19. 19.
    Fass, S., Ganaye, V., Urbain, V., Manein, J., and Brock, J. C. (1994), Environ. Technol. 15, 459–467.CrossRefGoogle Scholar
  20. 20.
    Ramos, J. L., Duques, E., Rodríguez-Herva, J. J., Godoy, P., Haidour, A., and Fernández-Barrera, A. (1997), J. Biol. Chem. 272(7), 3887–3890.CrossRefGoogle Scholar
  21. 21.
    Fang, J., Barcelona, M. J., and Alvarez, P. J. J. (2000), Appl. Microbiol. Biotechnol. 54, 382–389.CrossRefGoogle Scholar
  22. 22.
    Sikkema, J., de Bont, J. A. M., and Poolman, B. (1994), J. Biol. Chem. 269, 8022–8028.Google Scholar
  23. 23.
    Alvarez, P. J. J., Anid, P. J., and Vogel, T. M. (1994), J. Environ. Eng. 120, 1327–1336.CrossRefGoogle Scholar
  24. 24.
    Harms, G., Rabus, R., and Widdel, F. (1999), Arch. Microbiol. 172, 303–312.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • A. Peña-Calva
    • 1
  • A. Olmos-Dichara
    • 1
  • G. Viniegra-González
    • 1
  • F. M. Cuervo-López
    • 1
  • J. Gómez
    • 1
  1. 1.Departmento de BiotecnologíaUniversidad Autónoma Metropolitana-IztapalapaVicentinaMéxico, DF

Personalised recommendations