Skip to main content
Log in

Advanced roll powder sintering additive manufacturing technology

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This paper is about the great modification of Roll Powder Sintering (RPS) additive manufacturing technology and possibility of definition a point’s location in 3D space within a single value by spiral coordinate system. A new algorithm of sequence manufacturing is shorter than previous one and provides higher performance of RPS machine. Proposed methods significantly increase quality, precision and safety of the objects manufacturing with RPS. The new designed RPS device compared with basic and enhanced variants. The described results show the unique potential of the RPS for the fourth technical revolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tomlin, M., Meyer, J.: Topology optimization of an additive layer manufactured (ALM) aerospace part. In: The \(7^{{\rm th}}\) Altair CAE Technology Conference, pp. 1–9 (2011)

  2. Emmelmann, C., Sander, P., Kranz, J., Wycisk, E.: Laser additive manufacturing and bionics: redefining lightweight design. Phys. Procedia 12A, 364–368 (2011)

    Article  Google Scholar 

  3. Vilanova, J., Romera, P., Lasagni, F., Zorrilla, A., Perinã’n, A.: Additive layer manufacturing for launcher’s applications. In: Proceedings \(13^{{\rm th}}\) European Conference on Spacecraft Structures, Materials. (2014)

  4. Shulunov, V.R.: A high performance, high precision, low cost rapid prototyping and manufacturing technology. Int. J. Autom. Smart Technol. (2014). https://doi.org/10.5875/ausmt.v4i3.718

    Google Scholar 

  5. Shulunov, V.R.: Several advantages of the ultra high-precision additive manufacturing technology. Int. J. Adv. Manuf. Technol. (2015). https://doi.org/10.1007/s00170-015-7533-0

    Google Scholar 

  6. Shulunov, V.R.: A roll powder sintering additive manufacturing technology. Appl. Mech. Mater. 789–790, 1210–1214 (2015)

    Google Scholar 

  7. Shulunov, V.R.: The device manufacturing objects by roll powder sintering [Ustrojstvo izgotovlenija izdelij rulonnym poroshkovym spekaniem]. Patent RF, no. 2601836

  8. Shulunov, V.R.: The method manufacturing objects by Roll Powder Sintering [Sposob izgotovlenija izdelij rulonnym poroshkovym spekaniem]. Patent RF, no. 2609911

  9. Shulunov, V.R.: Enhanced roll powder sintering additive manufacturing technology. Int. J. Autom. Smart Technol. (2018). https://doi.org/10.5875/ausmt.v8i1.1597

    Google Scholar 

  10. Okazaki, Y., Mishima, N., Ashida, K.: Microfactory and micro machine tool. In: The 1st Korea–Japan Conference on Positioning Technology Daejeon, Korea (2002)

  11. Chern, G.L., Renn, J.C.: Development of a novel micro-punching machine using proportional solenoid. J. Chin. Soc. Mech. Eng. 25, 89–93 (2004)

    Google Scholar 

  12. Chern, G.L., Renn, J.C.: Development of a novel micro-punching machine using proportional solenoid. J. Mater. Process. Technol. 25, 89–93 (2004)

    Google Scholar 

  13. Okazaki, Y., Mishima, N., Ashida, K.: Microfactory concept, history and developments. J. Manuf. Sci. Eng. 126(4), 837–844 (2004). https://doi.org/10.1115/1.1823491

    Article  Google Scholar 

  14. Byung, Y.J., Rhim, S.H., Oh, S.L.: Micro-hole fabrication by mechanical punching process. J. Mater. Process. Technol. 170, 593–601 (2005)

    Article  Google Scholar 

  15. Chern, G.L., Chuang, Y.: Study on vibration—EDM and mass punching of micro holes. J. Mater. Process. Technol. 180, 151–160 (2006)

    Article  Google Scholar 

  16. Qin, Y.: Forming-tool design innovation and intelligent tool structure/system concepts. Int. J. Mach. Tools Manuf. 46(11), 1253–1260 (2006). https://doi.org/10.1016/j.ijmachtools.2006.01.013

    Article  Google Scholar 

  17. Qin, Y., et al.: Development of a new machine system for the forming of micro-sheet-products. Int. J. Mater. Form. 1, 475–478 (2008). https://doi.org/10.1007/s12289-008-0098-9

    Article  Google Scholar 

  18. Sivanandan, K., et al.: Fabrication and transverse piezoelectric characteristics of PZT thick-film actuators on alumina substrates. Sens. Actuators A Phys. 148(1), 134–137 (2008)

    Article  Google Scholar 

  19. Razali, A., Qin, Y.: A review on micro-manufacturing, micro-forming and their key issues. Procedia Eng. 53, 665–672 (2013). https://doi.org/10.1016/j.proeng.2013.02.086

    Article  Google Scholar 

  20. Shulunov, V.R.: Transformation of 3D object into flat ribbon for RPS additive manufacturing technology. Rapid Prototyp. J. 23(2) (2017). https://doi.org/10.1108/RPJ-11-2015-0164. ISSN: 1355-2546

  21. Shulunov, V.R.: Comparison of algorithms for converting 3D objects into rolls, using a spiral coordinate system. Virtual Phys. Prototyp. 12(3), 249–260 (2017). https://doi.org/10.1080/17452759.2017.1325132

    Article  Google Scholar 

  22. Shulunov, V.R.: Algorithm for converting 3D objects into rolls using spiral coordinate system. Virtual Phys. Prototyp. 11(2), 91–97 (2016). https://doi.org/10.1080/17452759.2016.1175360

    Article  Google Scholar 

  23. Shulunov, V.R., Esheeva, I.R.: Accelerated algorithm for solids of revolution converting into ribbon by spiral coordinate system. Int. J. Intell. Eng. Syst. 10(3), 117–125 (2017). https://doi.org/10.22266/ijies2017.0630.21

    Article  Google Scholar 

  24. Shulunov, V.R., Esheeva, I.R.: A linear algorithm for conformal 3D-to-flatness coordinates conversion. Virtual Phys. Prototyp. 12(1), 85–94 (2017). https://doi.org/10.1080/17452759.2016.1276820

    Article  Google Scholar 

  25. Shulunov, V.R.: The program spiral converting parallel similar objects into a linear sequence [Programma spiral’nogo preobrazovaniya parallel’no podobnykh ob”ektov v linejnuyu posledovatel’nost’]. Certificate of state registration of computer programs No. 2016613199(RU), 21.12.2015

  26. Shulunov, V.R.: Linear spiral convertor for 3D objects into a ribbon [Linejno spiral’nj convertor slojov 3D ob”ektov v lentu]. Certificate of state registration of computer programs No. 2017614132(RU), 06.04.2017

  27. Shulunov, V.R.: The program spiral converting solids of revolution into a linear sequence [Programma spiral’nogo preobrazovaniya tel vraschenia v linejnuyu posledovatel’-nost’]. Certificate of state registration of computer programs No. 2017614186(RU), 07.04.2017

  28. Belyaev, E.S., Maltsev, I.M., Sorokin, V.K.: The technology of rolling and sintering metal powders and nets. N.Novgorod: NSTU. 28 p. UDC 621.762: 621.77.04 (2015)

  29. Lu, X., Yang, S., Evans, J.R.G.: Ultrasound-assisted microfeeding of fine powders. Particuology 6, 2–8 (2008). Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved. https://doi.org/10.1016/j.cpart.2007.10.007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav R. Shulunov.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulunov, V.R. Advanced roll powder sintering additive manufacturing technology. Int J Interact Des Manuf 12, 1109–1117 (2018). https://doi.org/10.1007/s12008-018-0475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-018-0475-7

Keywords

Navigation