A global approach to manage the performance of the problem solving process in innovative design

  • Sébastien Dubois
  • Nicolas Maranzana
  • Nathalie Gartiser
  • Roland De Guio
Original Paper


This article focuses on the problem solving process in design. Today, enterprises face an important need of innovation, as they have to regularly propose new products or new services. Design is one of the key activities of enterprises in order to be innovative, but it is also one whose performances are hard to assess and activities difficult to manage. Studies on performance of the design process are quite few. Despite there exists many tools to evaluate and manage performance in a variety of fields, few tools are proposed Please check and confirm the author names and initials. Amend if necessary.or customized for the design activity. Some parts of this activity are more or less manageable, but one remains hardly controllable: the problem solving process. Three main topics are tackled in this article. Firstly, the article defines the performance, the enterprise organization, the design activity and the role of problem solving in this activity. Then the focus will be done on the ways to measure and manage the performance of problem solving in design; criteria to evaluate it and a set of indicators that impact it are proposed. In last, the use of this set of indicators will be proposed and a link between the indicators and a strategic choice will be established in order to build the problem solving process in accordance with this strategic position.


Performance Problem solving Design Indicators 


  1. 1.
    CEN, ECfS.: CEN/TC 389—Innovation Management. 2014. Available from:
  2. 2.
    CEN, ECfS.: Innovation management—Part 1: innovation management system. In: CEN/TS 16555-1:2013. (2013)Google Scholar
  3. 3.
    Cavallucci, D.: A research agenda for computing developments associated with innovation pipelines. Comput. Ind. 62(4), 377–383 (2011)CrossRefGoogle Scholar
  4. 4.
    Girard, P., Doumeingts, G.: Modelling the engineering design system to improve performance. Comput. Ind. Eng. 46(1), 43–67 (2004)CrossRefGoogle Scholar
  5. 5.
    Coates, G., Duffy, A.H.B., Whitfield, I., Hills, W.: Engineering management: operational design coordination. J. Eng. Des. 15(5), 433–446 (2004)CrossRefGoogle Scholar
  6. 6.
    Sim, S.K., Duffy, A.H.B.: Towards an ontology of generic engineering design activities. Res. Eng. Des. 14, 200–223 (2003)CrossRefGoogle Scholar
  7. 7.
    Taheri, A., Cavallucci, D., Oget, D.: Positioning ideality in inventive design; distinction, characteristics, measurement. In: Engineering, Technology and Innovation (ICE), 2014 International ICE Conference on (2014)Google Scholar
  8. 8.
    Taheri, A., Cavallucci, D., Oget, D.: A model for exploring technological changes in new systems. In: TRIZ Future Conference. Lausanne, Suisse (2014)Google Scholar
  9. 9.
    Kim, D.Y., Xirouchakis, P.: CO2DE: a decision support system for collaborative design. J. Eng. Des. 21(1), 31–48 (2010)CrossRefGoogle Scholar
  10. 10.
    Serna, L., Merlo, C., Zolghadri, M., Minel, S.: Actors’ networks management for design co-ordination. Int. J. Interact. Des. Manuf. (IJIDeM) 5(1), 67–71 (2011)CrossRefGoogle Scholar
  11. 11.
    Calle-Escobar, M., Mejía-Gutiérrez, R., Nadeau, J.-P., Pailhes, J.: Heuristics-based design process. Int. J. Interact. Des. Manuf. (IJIDeM), pp. 1–18 (2014)Google Scholar
  12. 12.
    Hu, Y., Aziz, E.-S.S., Chassapis, C.: Creativity-based design innovation environment in support of robust product development. Int. J. Interact. Des. Manuf. (IJIDeM), pp. 1–19 (2014)Google Scholar
  13. 13.
    Alsyouf, I., Al-Alami, A., Saidam, A.: Implementing product design development methodology for assessing and improving the performance of products. Int. J. Interact. Des. Manuf. (IJIDeM) 9(3), 225–234 (2015)CrossRefGoogle Scholar
  14. 14.
    Fischer, X., Nadeau, J.-P.: Interactive design: then and now. in research in interactive design. In: Virtual, Interactive and Integrated Product Design and Manufacturing for Industrial Innovation, vol. 3, pp. 1–5. Springer Paris, Paris (2011)Google Scholar
  15. 15.
    Porter, M.E.: Competitive advantage : creating and sustaining superior performance, pp. 592. Free Press, New York (1998)Google Scholar
  16. 16.
    Lorino, P.: Méthodes et pratiques de la performance. Editions d’Organisation ed. Paris (2003)Google Scholar
  17. 17.
    Gibert, P.: Le Contrôle de gestion dans les organisations publiques Éditions d’Organisation ed., Paris (1980)Google Scholar
  18. 18.
    Gartiser, N., Lerch, C., Lutz, P.: Appréhender la dynamique d’évolution des organisations. Vers une opérationalisation des modèles de Mintzberg. in XIIIème Conférence Internationale de Management Stratégique. Normandie-Vallée de Seine, France (2004)Google Scholar
  19. 19.
    Fortuin, L.: Performance indicators—why, where and how? Eur. J. Oper. Res. 34(1), 1–9 (1988)CrossRefGoogle Scholar
  20. 20.
    Lohman, C., Fortuin, L., Wouters, M.: Designing a performance measurement system: a case study. Eur. J. Oper. Res. 156(2), 267–286 (2004)Google Scholar
  21. 21.
    Suh, N.P.: Axiomatic Design : Advances and Applications. Oxford University Press, New York (2001)Google Scholar
  22. 22.
    Cash, P., Hicks, B., Culley, S.: Activity Theory as a means for multi-scale analysis of the engineering design process: a protocol study of design in practice. Des. Stud. 38, 1–32 (2015)CrossRefGoogle Scholar
  23. 23.
    Pahl, G., Beitz, W.: Engineering Design : A Systematic Approach. Springer, New York (1996)CrossRefGoogle Scholar
  24. 24.
    Suh, N.P.: The Principles of Design. Oxford University Press, New York (1990)Google Scholar
  25. 25.
    Hicks, B.J., Culley, S.J., McAlpine, H.C., McMahon, C.A.: The fundamentals of an intelligent design observatory for researching the impact of tools, teams and technologies on information use and design performance. In: International Conference on Engineering Design (ICED’07). Paris, France (2007)Google Scholar
  26. 26.
    O’Donnell, F.J., Duffy, A.H.B.: Design Performance. Springer, New York (2005)Google Scholar
  27. 27.
    Toh, C.A., Miller, S.R.: How engineering teams select design concepts: a view through the lens of creativity. Des. Stud. 38, 111–138 (2015)CrossRefGoogle Scholar
  28. 28.
    Bonardel, N.: Towards understanding and supporting creativity in design: analogies in a constrained cognitive environment. Knowl. Based Syst. 13, 505–513 (2000)CrossRefGoogle Scholar
  29. 29.
    Simon, H.A.: The structure of ill-structured problems. Artif. Intell. 4, 181–201 (1973)CrossRefGoogle Scholar
  30. 30.
    Simon, H.A.: Problem forming, problem finding, and problem solving. In: \(1^{{\rm st}}\) International Congress on Planning and Design Theory. Boston, USA (1987)Google Scholar
  31. 31.
    Kaposi, A., Myers, M.: Systems for All. Imperial College Press, Singapore (2001)CrossRefMATHGoogle Scholar
  32. 32.
    Cabannes, G., Troussier, N., Gidel, T., Cherfi, Z.: An uncertainty-based approach to drive product preliminary design. Int. J. Interact. Des. Manuf. (IJIDeM) 5(1), 55–65 (2011)CrossRefGoogle Scholar
  33. 33.
    Coates, G., Duffy, A.H.B., Whitfield, I.: A preliminary approach for modelling and planning the composition of engineering project teams. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 221(7), 1255–1265 (2007)CrossRefGoogle Scholar
  34. 34.
    Stoyell, J.L., Kane, G., Norman, P.W., Ritchey, I.: Analyzing design activities which affect the life-cycle environmental performance of large made-to-order products. Des. Stud. 22(1), 67–86 (2001)CrossRefGoogle Scholar
  35. 35.
    Maranzana, N., Dubois, S., Gartiser, N., Caillaud, E.: Proposal of a system of indicators to measure performance of problem solving process in design. In: International Design Conference—Design’08. Dubrovnik, Croatia (2008)Google Scholar
  36. 36.
    Moreno, D.P., et al.: Fundamental studies in design-by-analogy: a focus on domain-knowledge experts and applications to transactional design problems. Des. Stud. 35(3), 232–272 (2014)CrossRefGoogle Scholar
  37. 37.
    Taheri, A., Cavallucci, D., Oget, D.: Measuring the efficiency of inventive activities along inventive projects in R&D. In: TRIZ Future 2013. France, Paris (2013)Google Scholar
  38. 38.
    Silverstein, D., DeCarlo, N., Slocum, M.S.: Insourcing innovation: how to achieve competitive excellence using TRIZ. Auerbach Publications, Boca Raton (2007)Google Scholar
  39. 39.
    Lin, L., Dubois, S., De Guio, R., Rasovska, I.: An exact algorithm to extract the generalized physical contradiction. Int. J. Interact. Des. Manuf. (IJIDeM) 9(3), 185–191 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2016

Authors and Affiliations

  • Sébastien Dubois
    • 1
  • Nicolas Maranzana
    • 2
  • Nathalie Gartiser
    • 1
  • Roland De Guio
    • 1
  1. 1.INSA Strasbourg, LGECOStrasbourgFrance
  2. 2.Arts et Métiers ParisTech, LCPIParisFrance

Personalised recommendations