Advertisement

An innovative design approach to develop external articular medical devices

  • Ricardo Duarte
  • Michel Mesnard
  • Jean-Pierre Nadeau
Original Paper

Abstract

The overwhelming majority of the work involved in the development of external medical devices, as orthoses, consists in applying the companies’ empirical knowledge. However, this non structured method, in some cases, may lead to incomplete, inadequate or low products quality. This fact precludes the patient to use the device for long term and consequently the rehabilitation desired effect promoted by the orthosis is compromised. Based on that, to promote a superior product quality, different knowledge from several domains should be considered and should interact in order to achieve a common goal, during the development stages. Additionally, when the development concerns medical devices, the users’ needs and users’ interface and way to use it gain a major importance. The combination of these different factors is a difficult task and is usually overlooked by the companies. This fact demonstrates the importance of the implementation of a design approach for the development of medical devices, which will permit to plan and structure each stage of the products’ development. According to that, the goal of this study was to develop an innovative design approach for the development of an articulated external medical device (articular orthoses) based on the most significant moments during the device’s usage.

Keywords

Design approach Usage significant moments Articular external medical devices 

Notes

Acknowledgments

The authors gratefully acknowledge the funding of ANRT and Lagarrigue Aquitaine SAS.

References

  1. 1.
    Hoyos Ruiz, J., Martinez Cadavid, F., Osorio Gomez, G., Méjia Gutiérrez, R.: Implementation of ergonomic aspects throughout the engineering design process: human-artefact-context analysis. Int. J. Interact. Des. Manuf. 1, 1–15 (2015)Google Scholar
  2. 2.
    Kang, H., Long, J.P., Urbiel Golner, G.D., Goldstein, S.A., Hollister, S.J.: A paradigm for the development and evaluation of novel implant topologies for bone fixation: implant design and fabrication. J. Biomech. 45, 2241–2247 (2012)CrossRefGoogle Scholar
  3. 3.
    Benabid, Y.: Contribution à l’amélioration du processus de conception des produits innovants : Développement d’outils d’aide au choix des processus. Génie des procédés. Ecole nationale supérieure d’arts et métiers–ENSAM, Français (NNT :2014ENAM0003) (2014)Google Scholar
  4. 4.
    Ammar, A.A.: Adaptation et mise en place d’un processus d’innovation et de conception au sein d’une PME. Automatique/Robotique. Arts et Métiers ParisTech, Français. (NNT : 2010ENAM0040) (2010)Google Scholar
  5. 5.
    Langeveld, L.: Product design with embodiment design as a new perspective. In: Coelho, D.A. (eds.) Industrial Design—New Frontiers. InTech, ISBN: 978-953-307-622-5 (2011)Google Scholar
  6. 6.
    Jin, Y., Plott, J., Chen, R., Wensman, J., Shih, A.: Additive manufacturing of custom orthoses and prostheses—a review. Procedia CIRP 36, 199–204 (2015)CrossRefGoogle Scholar
  7. 7.
    Bitterman, N.: Design of medical devices—a home perspective. Eur. J. Intern. Med. 22(1), 39–42 (2011)CrossRefGoogle Scholar
  8. 8.
    Jin, Y., He, Y., Shih, A.: Process planning for the fuse deposition modeling of ankle-foot-ohoses. Procedia CIRP 42(no. Isem Xviii), 760–765 (2016)CrossRefGoogle Scholar
  9. 9.
    Lang, A.R., Martin, J.L., Sharples, S., Crowe, J.A.: The effect of design on the usability and real world effectiveness of medical devices: a case study with adolescent users. Appl. Ergon 44(5), 799–810 (2013)CrossRefGoogle Scholar
  10. 10.
    Sharples, S., Martin, J., Lang, A., Craven, M., O’Neill, S., Barnett, J.: Medical device design in context: a model of user-device interaction and consequences. Displays 33(4–5), 221–232 (2012)CrossRefGoogle Scholar
  11. 11.
    Henderson, W.H., Lamoreux, L.W.: The orthotic prescription derived from a concept of basic orthotic functions. Bull. Prosthet. Res. 10, 89–96 (1969)Google Scholar
  12. 12.
    Condie, D.N.: The modern era of orthotics. Prosthet. Orthot. Int. 32(3), 313–323 (2008)CrossRefGoogle Scholar
  13. 13.
    ISO 8549-1. Prosthetics and orthotics—Vocabulary—Part 1: General terms for external limb prostheses and external orthoses. ISO 8549-1:1989 (2011)Google Scholar
  14. 14.
    Colombo, G., Filippi, S., Rizzi, C., Rotini, F., Milano, P.: A computer-assisted methodology to innovate the development process of prosthesis socket,. In: Fischer, X., Coutellier, D. (eds.) Research in Interactive design, pp 1–8. Springer, Paris (2006). ISBN: 2287483632Google Scholar
  15. 15.
    Council Directive 93/42/EEC of 14 June 1993 concerning medical devices. Off. J. Eur. Commun. 36, 44 (1993)Google Scholar
  16. 16.
    Fischer, X., Nadeau, J.-P.: Interactive design: then and now. Res. Interact. Des. 3, 1–5 (2011)Google Scholar
  17. 17.
    Fischer, X., Coutellier, D.: The interaction: a new way of designing. Res. Interact. Des. 3, 1–15 (2006)Google Scholar
  18. 18.
    McClelland, I., Suri, J.F.: Involving people in design. In: Wilson, J.R., Corlett, E.N. (eds.) Evaluation of human work, 3rd edn, pp. 281–333. Taylor and Francis, London (2004)Google Scholar
  19. 19.
    Maguire, M.: Methods to support human-centred design. Int. J. Hum. Comput. Stud. 55(4), 587–634 (2001)CrossRefMATHGoogle Scholar
  20. 20.
    Earthy, J., Jones, B.S., Bevan, N.: The improvement of human-centred processes–facing the challenge and reaping the benefit of ISO 13407. Int. J. Hum. Comput. Stud. 55(4), 553–585 (2001)Google Scholar
  21. 21.
    Martin, J.L., Norris, B.J., Murphy, E., Crowe, J.A.: Medical device development: the challenge for ergonomics. Appl. Ergon 39(3), 271–283 (2008)CrossRefGoogle Scholar
  22. 22.
    ISO 13407. Human-centred Design Processes for Interactive Systems. International Organization for standardization, Geneva (1999)Google Scholar
  23. 23.
    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design—A Systematic Approach, 3rd edn. Springer, London. ISBN: 978-1-84628-319-2 (2007)Google Scholar
  24. 24.
    Ulrich, K.T., Eppinger, S.D.: Product Design and Development, 6th edn. p. 448. McGraw-Hill Education, ISBN: 978-0073404776 (2015)Google Scholar
  25. 25.
    Baxter, M.: Product Design, 2nd edn. p. 308. ISBN: 0748741976, 9780748741977 (1995)Google Scholar
  26. 26.
    Valverde, U., Nadeau, J.-P., Leon, J.F.: Innovation through pertinent patents research based on physical phenomena involved. Procedia CIRP 21, 515–520 (2014)CrossRefGoogle Scholar
  27. 27.
    Hallbeck, M.S.: How to develop usable surgical devices—the view from a US research university. In: Duffy, V.G. (eds.) Advances in Human Factors and Ergonomics in Healthcare, pp. 286–295. CRC, Lincoln (2010)Google Scholar

Copyright information

© Springer-Verlag France 2016

Authors and Affiliations

  1. 1.Université de BordeauxTalenceFrance
  2. 2.Arts et MétiersTalenceFrance

Personalised recommendations