Virtualisation process of a sheet metal punching machine within the Industry 4.0 vision

  • Aitor Moreno
  • Gorka Velez
  • Aitor Ardanza
  • Iñigo Barandiaran
  • Álvaro Ruíz de Infante
  • Raúl Chopitea
Original Paper

Abstract

This paper presents the process to construct a digital twin for a sheet metal punching machine to support the interactive design of optimal NC machining programs. The results show that this entity manages to simulate interactively the basic behaviour of the actual sheet metal machine: movements, machining operations and connectivity with robotic arms. Using Ethernet/IP communication protocol, Digital Twins can be connected and cooperate to simulate virtual production lines. The paper concludes with the necessity of going deeper in the virtualisation of the sheet metal machining process, by adding more realistic physical behaviour (heat transfer, accelerations...) and connecting the Digital Twin with real mechanical parts under new simulation tools.

Keywords

Industry 4.0 Digital twin Simulation Visualisation 

Supplementary material

Supplementary material 1 (avi 7442 KB)

References

  1. 1.
  2. 2.
    Blanchet, M., Rinn, T., von Thaden, G., de Thieulloy, G.: Industry 4.0: the new industrial revolution. How Europe will succeed. In: Think Act, Roland Berger Strategy Consultants GmbH (2014)Google Scholar
  3. 3.
    Brooks, P.: Ethernet/IP-industrial protocol. In: 8th IEEE International Conference on Emerging Technologies and Factory Automation, vol. 2, pp. 505–514 (2001)Google Scholar
  4. 4.
    Drath, R., Horch, A.: Industrie 4.0: hit or hype? [industry forum]. IEEE Ind. Electron. Mag. 8(2), 56–58 (2014). doi: 10.1109/MIE.2014.2312079 CrossRefGoogle Scholar
  5. 5.
    Folkert, K., Fojcik, M.: Ontology-based integrated monitoring of hadoop clusters in industrial environments with OPC UA and RESTful web services. In: Computer Networks, CN 2015, Communications in Computer and Information Science, vol. 522, pp. 162–171 (2015). doi: 10.1007/978-3-319-19419-6_15
  6. 6.
    Gardan, J.: Definition of users’ requirements in the customized product design through a user-centered translation method. Int. J. Interact. Des. Manuf. (IJIDeM), 1–9 (2015). doi: 10.1007/s12008-015-0275-2
  7. 7.
    Group, D.: CHROMA, electric punching machine. Tech. Rep. (2016). http://www.danobatgroup.com/en/punching-machines/electric-chroma
  8. 8.
    Heng, S.: Industry 4.0: upgrading of Germany’s industrial capabilities on the Horizon (2014). Available at SSRN: http://ssrn.com/abstract=2656608
  9. 9.
    Hu, T., Li, P., Zhang, C., Liu, R.: Design and application of a real-time industrial Ethernet protocol under Linux using RTAI. Int. J. Comput. Integr. Manuf. 26(5), 429–439 (2013). doi: 10.1080/0951192X.2012.731609 CrossRefGoogle Scholar
  10. 10.
    Lantek: Lantek Expert CAD/CAM Nesting software. Tech. Rep. (2016). http://www.lanteksms.com/uk/lantek-expert
  11. 11.
    Moreno, A., Segura, Á., Arregui, H., Ruiz de Infante, Á., Canto, N.: Real time 3d simulation tool for nc sheet metal cutting and punching processeses. In: Industrial Simulation Conference 2012, pp. 55–62. Eurosis (2012)Google Scholar
  12. 12.
    Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., De Amicis, R., Pinto, E., Eisert, P., Dollner, J., Vallarino, I.: Visual computing as a key enabling technology for industrie 4.0 and industrial internet. IEEE. Comput. Graph. 35(2), 26–40 (2015). doi: 10.1109/MCG.2015.45 CrossRefGoogle Scholar
  13. 13.
    Robert, J., Georges, J.P., Rondeau, E., Divoux, T.: Minimum cycle time analysis of ethernet-based real-time protocols. Int. J. Comput. Commun. Control 7(4), 744–758 (2014). doi: 10.15837/ijccc.2012.4.1372, http://univagora.ro/jour/index.php/ijccc/article/view/1372
  14. 14.
    Schiffer, V.: The common industrial protocol (CIP) and the family of CIP networks. Tech. Rep. (2006). https://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00123R1_Common-Industrial_Protocol_and_Family_of_CIP_Networks.pdf
  15. 15.
    Sha, L., Gopalakrishnan, S., Liu, X., Wang, Q.: Cyber-physical systems: a new frontier. In: SUTC ’08. IEEE International Conference on Sensor Networks, Ubiquitous and Trustworthy Computing, pp. 1–9 (2008). doi: 10.1109/SUTC.2008.85
  16. 16.
    Stork, A.: Industry 4.0: cyber-physical equivalence. Tech. Rep. (2015). https://www.igd.fraunhofer.de/en/Institut/Abteilungen/IET/Projekte/INDUSTRIE-40-CYBER-PHYSICAL-EQUIVALENCE
  17. 17.
    Tideman, M., van der Voort, M.C., van Houten, F.J.A.M.: A new product design method based on virtual reality, gaming and scenarios. Int. J. Interact. Des. Manuf. (IJIDeM) 2(4), 195–205 (2008). doi: 10.1007/s12008-008-0049-1 CrossRefGoogle Scholar
  18. 18.
    Velez, G., Moreno, A., Ruíz De Infante, Á., Chopitea, R.: Real-time part detection in a virtually machined sheet metal defined as a set of disjoint regions. Int. J. Comput. Integr. Manuf. 0(0), 1–16 (0). doi: 10.1080/0951192X.2015.1130263

Copyright information

© Springer-Verlag France 2016

Authors and Affiliations

  • Aitor Moreno
    • 1
  • Gorka Velez
    • 1
  • Aitor Ardanza
    • 1
  • Iñigo Barandiaran
    • 1
  • Álvaro Ruíz de Infante
    • 2
  • Raúl Chopitea
    • 2
  1. 1.20009 Donostia - San SebastiánSpain
  2. 2.Lantek Investigación y DesarrolloMiñanoSpain

Personalised recommendations