Embodiment for requirements

The use of the knowledge stored in smart Solutions Catalogs for satisfying specific design requirements
  • Francesco Rosa
  • Edoardo Rovida
  • Roberto Viganó
Original Paper


The great majority of the design methods seems to neglect the importance of the final stages of the design process, where first product architecture and then product details are defined. Nevertheless, almost all the design methods experts agree that details can ruin a good concept, but cannot rescue a poor concept, implicitly recognizing the advantage that will result from anticipating the main embodiment and detail design issues in the early phases of the design process. In order to solve this contradiction, authors have theoretically conceived and practically deployed the architecture of a data management system capable to store, manage and retrieve the practical solutions that are likely to be the more promising for a given specific design or re-design problem. This data management system is deeply rooted in the theories behind the systematic design methods, and, furthermore encompass the data structure defined in the systematic design approach, as well as the software tools nowadays well integrated in the design process, such as PDM and/or PLM systems.


Systematic Design Embodiment  Detail Design Smart Solution Catalog 


  1. 1.
    Leyer, A.: Maschinenkonstruktionslehre, Birkhäuser Basel (1963) ISBN-10: 3764302429Google Scholar
  2. 2.
    Rodenacker, W.G.: Methodisches Konstruieren, Herausgegeben von K. Kollmann, Spinger, Berlin (1970)Google Scholar
  3. 3.
    Delahousse, B., Meganck, M.: Engineering in Context. Authors and Academica, Aarhus, Denmark (2009). ISBN 978-87-7675-700-7Google Scholar
  4. 4.
    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design, A Systematic Approach. Springer, London (2007). London, 3rd english editionGoogle Scholar
  5. 5.
    Pahl, G., Beitz, W.: Konstruktionslehre, 1st edn. Springer, Berlin/Heidelberg (1977)CrossRefGoogle Scholar
  6. 6.
    Motte, D., Yannou, B.: On the interaction between the engineering design and the development process models part I: elaborations on the generally accepted. Research into Design Supporting Sustainable Product Development, pp. 978–981 (2011)Google Scholar
  7. 7.
    Richtlinie VDI 2221.: Produkte, Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte. Technical report (1993)Google Scholar
  8. 8.
    VDI-Richtlinie: VDI 2222 Blatt 1. Konstruktionsmethodik - Methodisches Entwickeln von Lösungsprinzipien. Technical report (1997)Google Scholar
  9. 9.
    VDI-Richtlinie: VDI 2222 Blatt 2. Konstruktionsmethodik; Erstellung und Anwendung von Konstruktionskatalogen. Technical report (1982)Google Scholar
  10. 10.
    VDI-Richtlinie: VDI 2223. Methodisches Entwerfen technischer Produkte. Technical report (2004)Google Scholar
  11. 11.
    Wölkl, S., Shea, K.: A COMPUTATIONAL PRODUCT MODEL FOR CONCEPTUAL DESIGN USING SYSML. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference—IDETC/CIE 2009., San Diego (CA), USA (Aug 30–Sept 2, 2009) (2009)Google Scholar
  12. 12.
    Eder,W., E.: Cognitive and systematic design. MM Sci. J. 9–12 (2008)Google Scholar
  13. 13.
    Nevala, K.: Content-based Design Engineering Thinking - In the Search for Approach. Doctoral thesis, (University of Jyväskalä, Finland, Jyväskalä: University Printing House) (2005)Google Scholar
  14. 14.
    Roth, R., Binz, D., Watty, H.: Generic structure of knowledge within the product development process. In: Design 2010, Dubrovnik (Croatia) (2010)Google Scholar
  15. 15.
    Cardillo, Alessandro, Cascini, Gaetano, Frillici, Francesco, Rotini, Federico: Computer-aided embodiment design through the hybridization of mono objective optimizations for efficient innovation process. Comput. Ind. 62(4), 384–397 (2011)CrossRefGoogle Scholar
  16. 16.
    Roth, K.: Konstruieren mit Konstruktionskatalogen. Band I - Konstruktionslehre. 3. Auflage. Springer, Berlin (2000)CrossRefGoogle Scholar
  17. 17.
    Roth, K.: Konstruieren mit Konstruktionskatalogen. Band II - Konstruktionskataloge. 3. Auflage. Springer, Berlin (2000)CrossRefGoogle Scholar
  18. 18.
    Hirtz, J., Stone, R.B., Mcadams, D.A., Szykman, S., Wood, K.L.: A functional basis for engineering design: Reconciling and evolving previous efforts. Res. Eng. Des. 13, 65–82 (2002)CrossRefGoogle Scholar
  19. 19.
    Viganò, Roberto, Osorio Gómez, Gilberto: Automatic assembly sequence exploration without precedence definition. Int. J. Interact. Des. Manuf. (IJIDeM) 7(2), 79–89 (2012)CrossRefGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
    Viganó, Roberto: Use of drawings archive for design process. Appl. Mech. Mater 490–491, 573–579 (2014)CrossRefGoogle Scholar
  23. 23.
    IHMC CmapTools. Ihmc cmaptools (2014).
  24. 24.
    Fischer, X., Coutellier, D.: Research in Interactive Design: Virtual Concept, vol. 2. Springer, France (2006)Google Scholar
  25. 25.
    Rôta, T.: CATALOGO 02/2014. Tellure Rôta, Formigine (MO): Italy (2014)Google Scholar
  26. 26.
    Moroni, C.: Progettazione e sviluppo di un aspo svolgitore, Bachelor’s Thesis in cooperation with Asservimenti Presse S.R.L., Massalengo (LO), ITALY, Politecnico di Milano, IT (2014)Google Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  • Francesco Rosa
    • 1
  • Edoardo Rovida
    • 1
  • Roberto Viganó
    • 1
  1. 1.Dip. MeccanicaPolitecnico di MilanoMilanItaly

Personalised recommendations