Advertisement

Idealization of scanning-derived triangle mesh models of prismatic engineering parts

Original Paper

Abstract

This paper presents a method to idealize scanning-derived triangle mesh models of prismatic engineering parts based on computer-aided design (CAD) modeling workflow. The objective is to mimic the designer’s approach to remodeling existing physical objects in the CAD software modeling environment in order to quickly and robustly idealize or perfect noisy mesh models derived from 3D scanning. The method consists of segmentation, feature identification, and a two-part idealization algorithm. The end result is an idealized parametric mesh model, which contains identical parametric feature information to that of the corresponding model in the current parameter-based CAD software. With the presented method, the scanning-derived mesh model of a prismatic engineering part can be quickly idealized, analyzed and then interactively modified, facilitating a streamlined scan-based product design platform. Extensive case studies have been performed, which involve a variety of synthesized and actual scanning-derived mesh models. The outcomes of these case studies clearly illustrate the effectiveness of the presented method.

Keywords

Computer-aided design 3D scanning  Scan-based design Triangle mesh Feature identification  Model idealization 

Notes

Acknowledgments

This work has been supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

  1. 1.
    Chang, K.H.: Solid modeling. In: Product design modeling using CAD/CAE, pp. 125–167 (2014)Google Scholar
  2. 2.
    Varady, T., Martin, R.R., Cox, J.: Reverse engineering of geometric models—an introduction. Comput. Aided Des. 29(4), 255–268 (1997)CrossRefGoogle Scholar
  3. 3.
    Huber, D., Akinci, B., Tang, P.: Using laser scanners for modeling and analysis in architecture, engineering, and construction. In: Proceedings of the 44th Conference on Information Sciences and Systems, pp. 1–6 (2010)Google Scholar
  4. 4.
    Geng, J.: Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics 3(2), 128–160 (2011)CrossRefGoogle Scholar
  5. 5.
    Barone, S., Casinelli, M., Frascaria M., Paoli A., Razionale, A.V.: Interactive design of dental implant placements through CAD-CAM technologies: from 3D imaging to additive manufacturing. Int. J. Interact. Des. Manuf. (2015, in press)Google Scholar
  6. 6.
    Bern, M., Plassmann, P.: Mesh generation. In: Handbook of Computational geometry, pp. 291–332 (2000)Google Scholar
  7. 7.
    Wang, W.: Reverse engineering: technology of reinvention. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  8. 8.
    Frey, P., George, P.L.: Mesh generation. Wiley, New York (2010)Google Scholar
  9. 9.
    Cheng, S.W., Dey, T.K., Shewchuk, J.R.: Delaunay mesh generation. CRC Press, Boca Raton (2012)MATHGoogle Scholar
  10. 10.
    Kuo, C.C., Yau, H.T.: A new combinatorial approach to surface reconstruction with sharp features. IEEE Trans. Vis. Comput. Graph. 12(1), 73–82 (2006)CrossRefGoogle Scholar
  11. 11.
    Li, X., Han, C.Y., Wee, W.G.: On surface reconstruction: a priority driven approach. Comput. Aided Des. 41(9), 626–640 (2009)CrossRefGoogle Scholar
  12. 12.
    Durupt, A., Remy, S., Ducellier, G., Bricogne, M.: KBRE: a proposition of a reverse engineering process by a KBE system. Int. J. Interact. Des. Manuf. 4(4), 227–237 (2010)CrossRefGoogle Scholar
  13. 13.
    Lai, Y.K., Hu, S.M., Martin, R.R., Rosin, P.L.: Rapid and effective segmentation of 3D models using random walks. Comput. Aided Geom. Des. 26(6), 665–679 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Varady, T.: Automatic procedures to create CAD models from measured data. Comput. Aided Des. Appl. 5(5), 577–588 (2008)CrossRefGoogle Scholar
  15. 15.
    Weidlich, D., Cser, L., Polzin, T., Cristiano, D., Zickner, H.: Virtual reality approaches for immersive design. Int. J. Interact. Des. Manuf. 3(2), 103–108 (2009)CrossRefGoogle Scholar
  16. 16.
    Tching, L., Dumont, G., Perret, J.: Interactive simulation of CAD models assemblies using virtual constraints guidance. Int. J. Interact. Des. Manuf. 4(2), 95–102 (2010)CrossRefGoogle Scholar
  17. 17.
    Gao, C.H., Langbein, F.C., Marshall, A.D., Martin, R.R.: Approximate congruence detection of model features for reverse engineering. In: Proceedings of the shape modeling international, pp. 69–77 (2003)Google Scholar
  18. 18.
    Langbein, F.C., Gao, C.H., Mills, B.I., Marshall, A.D., Martin, R.R.: Topological and geometric beautification of reverse engineered geometric models. In: Proceedings of the ACM symposium on solid modeling and applications, pp. 255–260 (2004)Google Scholar
  19. 19.
    Karniel, A., Belsky, Y., Reich, Y.: Decomposing the problem of constrained surface fitting in reverse engineering. Comput. Aided Des. 37, 399–417 (2005)CrossRefGoogle Scholar
  20. 20.
    Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D., Mitra, N.J.: GlobFit: consistently fitting primitives by discovering global relations. ACM Trans. Graph. 30(4), (Article No. 52) (2011)Google Scholar
  21. 21.
    Wang, J., Gu, D., Gao, Z., Yu, Z., Tan, C., Zhou, L.: Feature-based solid model reconstruction. ASME J. Comput. Inf. Sci. Eng. 3, 011004 (2013)CrossRefGoogle Scholar
  22. 22.
    Benko, P., Kos, G., Varady, T., Andor, L., Martin, R.: Constrained fitting in reverse engineering. Comput. Aided Geom. Des. 19(3), 173–205 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Ke, Y., Fan, S., Zhu, W., Li, A., Liu, F., Shi, X.: Feature-based reverse modeling strategies. Comput. Aided Des. 38(5), 485–506 (2006)CrossRefGoogle Scholar
  24. 24.
    Mohanghegh, K., Sadeghi, M.H., Abdullah, A.: Reverse engineering of turbine blades based on design intent. Int. J. Adv. Manuf. Technol. 32(9–10), 1009–1020 (2007)CrossRefGoogle Scholar
  25. 25.
    Barbero, B.R.: The recovery of design intent in reverse engineering problems. Comput. Ind. Eng. 56, 1265–1275 (2009)CrossRefGoogle Scholar
  26. 26.
    Wang, J., Gu, D., Gao, Z., Yu, Z., Tan, C., Zhou, L.: A framework for 3D model reconstruction in reverse engineering. Comput. Ind. Eng. 63, 1189–1200 (2012)CrossRefGoogle Scholar
  27. 27.
    Benko, P., Martin, R., Varady, T.: Algorithms for reverse engineering boundary representation models. Comput. Aided Des. 33(11), 839–851 (2001)CrossRefGoogle Scholar
  28. 28.
    Belyaev, A., Ohtake, Y.: A comparison of mesh smoothing methods. In: Proceedings of the Israel-Korea Bi-National conference on geometric modeling and computer graphics, pp. 83–87 (2003)Google Scholar
  29. 29.
    Lieu, D., Sorby, S.: Visualization, modeling, and graphics for engineering design. Cengage Learning, Clifton Park (2009)Google Scholar
  30. 30.
    Song, X., Juttler, B.: Modeling and 3D object reconstruction by implicitly defined surfaces with sharp features. Comput. Graph. 33, 321–330 (2009)CrossRefGoogle Scholar
  31. 31.
    Fan, H., Yu, Y., Peng, Q.: Robust feature-preserving mesh denoising based on consistent subneighborhoods. IEEE Trans. Vis. Comput. Graph. 16(2), 312–324 (2010)CrossRefGoogle Scholar
  32. 32.
    Hristake, V.: Basics of solid modeling: your guide to 3D. AuthorHouse, Bloomington (2008)Google Scholar
  33. 33.
    Chen, J.S.S., Feng, H.Y.: Automatic prismatic feature segmentation of scanning-derived meshes utilising mean curvature histograms. Virtual Phys. Prototyp. 9(1), 45–61 (2013)CrossRefGoogle Scholar
  34. 34.
    Shih, R.H.: AutoCAD 2013 Tutorial—second level: 3D modeling. SDC Publications, Mission (2012)Google Scholar
  35. 35.
    Chang, K.H.: Product design modeling using CAD/CAE. Elsevier, Amsterdam (2014)Google Scholar
  36. 36.
    Terek, Z., Varady, T.: Digital shape reconstruction using a variety of local geometric filters. In: Proceedings of the 3rd Hungarian conference on computer graphics and geometry (2005)Google Scholar
  37. 37.
    Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22(3), 181–193 (2006)CrossRefGoogle Scholar
  38. 38.
    Wang, J., Yu, Z.: Surface feature based mesh segmentation. Comput. Graph. 35(3), 661–667 (2011)CrossRefGoogle Scholar
  39. 39.
    Yan, D.M., Wang, W., Liu, Y., Yang, Z.: Variational mesh segmentation via quadric surface fitting. Comput. Aided Des. 44(11), 1072–1082 (2012)CrossRefGoogle Scholar
  40. 40.
    Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Mathematics and visualization, pp. 35–57 (2003)Google Scholar
  41. 41.
    Vollmer, J., Mencl, R., Muller, H.: Improved Laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 18(3), 131–138 (1999)CrossRefGoogle Scholar
  42. 42.
    Besl, P.J., Jain, R.C.: Invariant surface characteristics for 3D object recognition in range images. Comput. Vis. Graph. Image Process. 33(1), 33–80 (1986)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations