Skip to main content
Log in

Vancomycin Containing PLLA/β-TCP Controls MRSA In Vitro

  • Basic Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Osteomyelitis caused by Methicillin-resistant Staphylococcus aureus (MRSA) often requires surgery and prolonged systemic antibiotic treatment. Local antibiotic delivery systems of bioceramics or polymers have been developed to treat osteomyelitis. A disadvantage of biodegradable polymers is the initial burst of antibiotics into the environment; one advantage of bioceramics is its osteoconductivity. We therefore developed a vancomycin-containing poly-l-lactic acid/β-tricalcium phosphate (PLLA/β-TCP) composite to control antibiotic release and stimulate bone formation.

Questions/purposes

We (1) characterized these composites, (2) assessed vancomycin release in inhibitory doses, and (3) determined whether they would permit cell adhesion, proliferation, and mineralization in vitro.

Methods

We molded 250 vancomycin-containing (VC) and 125 vancomycin-free (VUC) composites using PLLA, β-TCP, and chloroform. One hundred twenty-five VC composites were further dip-coated with PLLA (CVC) to delay antibiotic release. Composites were characterized according to their pore structure, size, volume, density, and surface area. Vancomycin release and bioactivity were determined. Adhesion, proliferation, and mineralization were assessed for two and three replicates on Days 3 and 7 with mesenchymal stem (MSC) and Saos type 2 cells.

Results

Pore size, volume, apparent density, and surface area of the CVC were 3.5 ± 1.9 μm, 0.005 ± 0.002 cm3/g, 1.18 g/cm3 and 3.68 m2/g, respectively. CVC released 1.71 ± 0.13 mg (63.1%) and 2.49 ± 0.64 mg (91.9%) of its vancomycin on Day 1 and Week 6, respectively. MSC and Saos type 2 cells attached and proliferated on composites on Days 3 and 7.

Conclusions

Vancomycin-containing PLLA/β-TCP composites release antibiotics in inhibitory doses after dip coating and appeared biocompatible based on adhesion, proliferation, and mineralization.

Clinical Relevance

Vancomycin-containing PLLA/β-TCP composites may be useful for controlling MRSA but will require in vivo confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams K, Couch L, Cierny G, Calhoun J, Mader JT. In vitro an in vivo evaluation of antibiotic diffusion from antibiotic-impregnated polymethylmethacrylate beads. Clin Orthop Relat Res. 1992;278:244–252.

    PubMed  Google Scholar 

  2. Antoci V Jr, Adams CS, Parvizi J, Davidson HM, Composto RJ, Freeman TA, Wickstrome E, Ducheyne P, Jungkind D, Shapiro IM, Hickok NJ. The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials. 2008;29:4684–4690.

    Article  PubMed  CAS  Google Scholar 

  3. Aslam S, Darouiche RO. Antimicrobial therapy for bone and joint infections. Curr Infect Dis Rep. 2009;11:7–13.

    Article  PubMed  Google Scholar 

  4. Aunoble S, Clement D, Frayssinet P, Harmand MF, Le Huec JC. Biological performance of a new β-TCP/PLLA composite material for applications in spine surgery: in vitro and in vivo studies. J Biomed Mater Res A. 2006;78:416–422.

    PubMed  Google Scholar 

  5. Broz A, Baresova V, Kromka A, Rezek B, Kalbacova M. Strong influence of hierarchically structured diamond nanotopography on adhesion of human osteoblasts and mesenchymal cells. Physica Status Solidi A. 2009;206:2038–2041.

    Article  CAS  Google Scholar 

  6. Bryers JD. Medical biofilms. Biotechnol Bioeng. 2008;100:1–18.

    Article  PubMed  CAS  Google Scholar 

  7. Cabanas MV, Pena J, Roman J, Vallet-Regi M. Tailoring vancomycin release from β-TCP/agarose scaffolds. Eur J Pharm Sci. 2009;37:249–256.

    Article  PubMed  CAS  Google Scholar 

  8. Cevher E, Orhan Z, Mulazimoglu L, Sensoy D, Alper M, Yildiz A, Ozsoy Y. Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres. Int J Pharm. 2006;317: 127–135.

    Article  PubMed  CAS  Google Scholar 

  9. Chen Y, Cho MR, Mak AFT, Li JS, Wang M, Sun S. Morphology and adhesion of mesenchymal stem cells on PLLA, apatite and apatite/collagen surfaces. J Mater Sci Mater Med. 2008;19:2563–2567.

    Article  PubMed  CAS  Google Scholar 

  10. Cierny G 3rd, Mader JT, Penninck JJ. A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res. 2003;414:7–24.

    Article  PubMed  Google Scholar 

  11. Dash AK, Cudworth GC. Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Methods. 1998;40:1–12.

    Article  PubMed  CAS  Google Scholar 

  12. Dion A, Langman M, Hall G, Filiaggi M. Vancomycin release behavior from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment. Biomaterials. 2005;26:7276–7285.

    Article  PubMed  CAS  Google Scholar 

  13. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317.

    Article  PubMed  CAS  Google Scholar 

  14. Esposito S, Leone S. Prosthetic joint infections: microbiology, diagnosis, management and prevention. Int J Antimicrob Agents. 2008;32:287–293.

    Article  PubMed  CAS  Google Scholar 

  15. Garvin K, Feschuk C. Polylactide-polyglycolide antibiotic implants. Clin Orthop Relat Res. 2006;437:105–110.

    Google Scholar 

  16. Gbureck U, Vorndran E, Barralet JE. Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions. Acta Biomater. 2008;4:1480–1486.

    Article  PubMed  CAS  Google Scholar 

  17. Gursel I, Yagmurlu F, Korkusuz F, Hasirci V. In vitro antibiotic release from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) rods. J Microencapsul. 2002;19:153–164.

    Article  CAS  Google Scholar 

  18. Hartemann-Heurtier A, Senneville E. Diabetic foot osteomyelitis. Diabetes Metab. 2008;34:87–95.

    Article  PubMed  CAS  Google Scholar 

  19. Hendriks JG, van Horn JR, van der Mei HC, Busscher HJ. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials. 2004;25:545–556.

    Article  PubMed  CAS  Google Scholar 

  20. Jager M, Feser T, Denck H, Krauspe R. Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro. Ann Biomed Eng. 2005;33:1319–1332.

    Article  PubMed  CAS  Google Scholar 

  21. Kanellakopoulou K, Giamerallos-Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. Drugs. 2000;59:1223–1232.

    Article  PubMed  CAS  Google Scholar 

  22. Kluin OS, van der Mei HC, Busscher HJ, Neut D. A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate). Biomaterials. 2009;30:4738–4742.

    Article  PubMed  CAS  Google Scholar 

  23. Koç N, Timuçin M, Korkusuz F. Fabrication and characterization of porous tricalcium phosphate ceramics. Ceramics Int. 2004;30:205–211.

    Article  Google Scholar 

  24. Korkusuz F, Uchida A, Shinto Y, Inoue K, Ono K. Biomaterial centered chronic osteomyelitis. Turk J Med Res. 1992;10:268–292.

    Google Scholar 

  25. Lamp KC, Friedrich LV, Mendez-Vigo L, Russo R. Clinical experience with daptomycin for the treatment of patients with osteomyelitis. Am J Med. 2007;120:13–20.

    Article  Google Scholar 

  26. Lavery LA, Peters EJ, Armstrong DG, Wendel CS, Murdoch DP, Lipsky BA. Risk factors for developing osteomyelitis in patients with diabetic foot wounds. Diabetes Res Clin Pract. 2009;83:347–352.

    Article  PubMed  Google Scholar 

  27. Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364: 369–379.

    Article  PubMed  CAS  Google Scholar 

  28. Li H, Ogle H, Jiang B, Hagar M, Li B. Cefazolin embedded biodegradable polypeptide nanofilms promising for infection prevention: a preliminary study on cell responses. J Orthop Res. 2010;28:992–999.

    Article  PubMed  CAS  Google Scholar 

  29. Liu SJ, Ueng SW, Lin S, Chan E. In vivo release of vancomycin from biodegradable beads. J Biomed Mater Res. 2002;63:807–813.

    Article  PubMed  CAS  Google Scholar 

  30. Lucke M, Schmidmaier G, Sadoni S, Wildemann B, Schiller R, Haas NP, Raschke M. 2003. Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone. 2003;32:521–531.

    Article  PubMed  CAS  Google Scholar 

  31. Mamidwar SS, Arena C, Kelly S, Alexander H, Ricci J. In vitro characterization of a calcium sulfate/PLLA composite for use as a bone graft material. J Biomed Mater Res B Appl Biomater. 2007;81:57–65.

    PubMed  Google Scholar 

  32. Merten HA, Wiltfang J, Grohmann U, Hoenig JF. Intraindividual comparative animal study of α- and β-tricalcium phosphate degradation in conjunction with simultaneous insertion of dental implants. J Craniofac Surg. 2001;12:59–68.

    Article  PubMed  CAS  Google Scholar 

  33. Miyai T, Ito A, Tamazawa G, Matsuno T, Sogo Y, Nakamura C, Yamazaki A, Satoh T. Antibiotic-loaded poly-ε-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis. Biomaterials. 2008;29:350–358.

    Article  PubMed  CAS  Google Scholar 

  34. Montjovent MO, Mark S, Mathieu L, Scaletta C, Scherberich A, Delabarde C, Zambelli PY, Bourban PE, Applegate LA, Pioletti DP. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone. 2008;42:554–564.

    Article  PubMed  CAS  Google Scholar 

  35. Nandi KS, Kundu B, Ghosh SK, Mandal TK, Datta S, De DK, Basu D. Cefuroxime-impregnated calcium phosphates as an implantable delivery system in experimental osteomyelitis. Ceramics Int. 2009;35:1367–1376

    Article  CAS  Google Scholar 

  36. Noel SP, Courtney H, Bumgardner JD, Haggard WO. Chitosan films: a potential local drug delivery system for antibiotics. Clin Orthop Relat Res. 2008;466:1377–1382.

    Article  PubMed  Google Scholar 

  37. Petrone C, Hall G, Langman M, Filiaggi MJ. Compaction strategies for modifying the drug delivery capabilities of gelled calcium polyphosphate matrices. Acta Biomater. 2008;4:403–413.

    Article  PubMed  CAS  Google Scholar 

  38. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–3431.

    Article  PubMed  CAS  Google Scholar 

  39. Rybak M, Lomaestro B, Rotschafer JC, Moellering R Jr, Craig W, Billeter M, Dalovisio JR, Levine DP. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66:82–98.

    Article  PubMed  CAS  Google Scholar 

  40. Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury. 2006;37:105–112.

    Article  Google Scholar 

  41. Schofield SC, Berno B, Langman M, Hall G, Filiaggi MJ. Gelled calcium polyphosphate matrices delay antibiotic release. J Dent Res. 2006;85:643–647.

    Article  PubMed  CAS  Google Scholar 

  42. Senthi S, Munro JT, Pitto RP. Infection in total hip replacement: meta-analysis. Int Orthop. 2011;35:253–260.

    Article  PubMed  Google Scholar 

  43. Shikhar Vohra S, Hennessy KM, Sawyer AA, Zhuo Y, Bellis SL. Comparison of mesenchymal stem cell and osteosarcoma cell adhesion to hydroxyapatite. J Mater Sci Mater Med. 2008;19:3567–3574.

    Article  PubMed  Google Scholar 

  44. Sia IG, Berbari EF. Osteomyelitis. Best Pract Res Clin Rheumatol. 2006;20:1065–1081.

    Article  PubMed  Google Scholar 

  45. Tanaka KS, Dietrich E, Ciblat S, Métayer C, Arhin FF, Sarmiento I, Moeck G, Parr TR Jr, Far AR. Synthesis and in vitro evaluation of bisphosphonated glycopeptide prodrugs for the treatment of osteomyelitis. Bioorg Med Chem Lett. 2010;20:1355–1359.

    Article  PubMed  CAS  Google Scholar 

  46. Tenover FC, Lancaster MV, Hill BC, Steward CD, Stocker SA, Hancock GA, O’Hara CM, McAllister SK, Clark NC, Hiramatsu K. Characterization of staphylococci with reduced susceptibilities to vancomycin and other glycopeptides. J Clin Microbiol. 1998;36:1020–1027.

    PubMed  CAS  Google Scholar 

  47. Webb ND, McCanless JD, Courtney HS, Bumgardner JD, Haggard WO. Daptomycin eluted from calcium sulfate appears effective against Staphylococcus. Clin Orthop Relat Res. 2008;466:1383–1387.

    Article  PubMed  Google Scholar 

  48. Yagmurlu MF, Korkusuz F, Gursel I, Korkusuz P, Ors U, Hasirci V. Sulbactam-cefoperazone polyhydroxybutyrate-cohydroxyvalerate (PHBV) local antibiotic delivery system: in vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J Biomed Mater Res. 1999;46:494–503.

    Article  PubMed  CAS  Google Scholar 

  49. Zimmerli W. Infection and musculoskeletal conditions: prosthetic-joint-associated infections. Best Pract Res Clin Rheumatol. 2006;20:1045–1063.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Muharrem Timuçin and Nursen Koç of Middle East Technical University, Department of Metallurgical and Material Engineering, Ankara, Turkey, who produced and provided the β-TCP. We also thank Duygu Uçkan, MD, PhD, of Hacettepe University, Faculty of Medicine, Department of Pediatrics Bone Marrow Transplantation Unit, Ankara, Turkey, for designing and interpreting the results of the in vitro study; Bülent Gümusel, PhD, of Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey, for directing the vancomycin release studies, and Kemal Behlulgil, PhD, of Middle East Technical University Central Laboratory for characterizing the composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feza Korkusuz MD.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research editors and board members are on file with the publication and can be viewed on request.

Clinical Orthopaedics and Related Research neither advocates nor endorses the use of any treatment, drug or device. Readers are encouraged to always seek additional information, including FDA-approval status, of any drug or device prior to clinical use.

Each author certifies that his or her institution waived approval for the reporting of this investigation and that all investigations were conducted in conformity with ethical principles of research.

This study was performed at Middle East Technical and Hacettepe Universities of Ankara, Turkey.

About this article

Cite this article

Kankilic, B., Bayramli, E., Kilic, E. et al. Vancomycin Containing PLLA/β-TCP Controls MRSA In Vitro. Clin Orthop Relat Res 469, 3222–3228 (2011). https://doi.org/10.1007/s11999-011-2082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-011-2082-9

Keywords

Navigation