Skip to main content
Log in

Temporal Variation in Fixation Stiffness Affects Healing by Differential Cartilage Formation in a Rat Osteotomy Model

  • Symposium: Bone Repair and Regeneration
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Dynamization involves a reduction in fixation construct stiffness during bone healing, allowing increased interfragmentary movement of the fracture through physiologic weightbearing and muscle contraction. Within some optimal range, interfragmentary movement stimulates healing, but this range likely varies across stages of bone healing.

Questions/purposes

How does the time of dynamization affect the cartilage formation, bony bridging, and bone resorption in a rat fracture-healing model?

Methods

Unilateral external fixators, stabilizing a 1-mm gap, were dynamized at 1 (D1 group, n = 10), 3 (D3 group, n = 11), or 4 (D4 group, n = 11) weeks postoperatively. Continuously 5 weeks stiff (S group, n = 10) and flexible (F group, n = 11) fixation were included for comparison. After 5 weeks, healing was evaluated by histomorphometric methods.

Results

Advanced healing, indicated by less cartilage and a greater rate of bony bridging, was observed in the S group compared to the D1 or F group. In contrast, the D3 and D4 groups had less cartilage and more bridging compared to the S group. Also, the S group had less cortical resorption than the F and D1 groups.

Conclusions

These data suggest late dynamization at the onset of bony bridging led to enhanced healing, whereas dynamization at the early stage of cartilage differentiation delayed healing.

Clinical Relevance

Although our observations from this small-animal study cannot be directly transferred to humans, these data suggest, once bony bridging begins, dynamization may stimulate bone healing and accelerate remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–B
Fig. 2
Fig. 3A–B
Fig. 4A–E
Fig. 5

Similar content being viewed by others

References

  1. Augat P, Merk J, Ignatius A, Margevicius K, Bauer G, Rosenbaum D, Claes L. Early, full weightbearing with flexible fixation delays fracture healing. Clin Orthop Relat Res. 1996;328:194–202.

    Article  PubMed  Google Scholar 

  2. Basumallick MN, Bandopadhyay A. Effect of dynamization in open interlocking nailing of femoral fractures: a prospective randomized comparative study of 50 cases with a 2-year follow-up. Acta Orthop Belg. 2002;68:42–48.

    PubMed  CAS  Google Scholar 

  3. Bergmann G, Graichen F, Rohlmann A. Hip joint forces in sheep. J Biomech. 1999;32:769–777.

    Article  PubMed  CAS  Google Scholar 

  4. Brumback RJ, Uwagie-Ero S, Lakatos RP, Poka A, Bathon GH, Burgess AR. Intramedullary nailing of femoral shaft fractures. Part II. Fracture-healing with static interlocking fixation. J Bone Joint Surg Am. 1988;70:1453–1462.

    PubMed  CAS  Google Scholar 

  5. Chao EY, Inoue N, Elias JJ, Aro H. Enhancement of fracture healing by mechanical and surgical intervention. Clin Orthop Relat Res. 1998;355(Suppl):S163–S178.

    Article  PubMed  Google Scholar 

  6. Claes L, Augat P, Suger G, Wilke HJ. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res. 1997;15:577–584.

    Article  PubMed  CAS  Google Scholar 

  7. Claes L, Blakytny R, Gockelmann M, Schoen M, Ignatius A,Willie B. Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model. J Orthop Res. 2009;27:22–27.

    Article  PubMed  Google Scholar 

  8. Claes L, Maurer-Klein N, Henke T, Gerngross H, Melnyk M, Augat P. Moderate soft tissue trauma delays new bone formation only in the early phase of fracture healing. J Orthop Res. 2006;24:1178–1185.

    Article  PubMed  Google Scholar 

  9. Claes L, Ruter A, Mayr E. Low-intensity ultrasound enhances maturation of callus after segmental transport. Clin Orthop Relat Res. 2005;430:189–194.

    Article  PubMed  Google Scholar 

  10. Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res. 1998;355(Suppl):S132–S147.

    Article  PubMed  Google Scholar 

  11. Clarke KA. Differential fore- and hindpaw force transmission in the walking rat. Physiol Behav. 1995;58:415–419.

    Article  PubMed  CAS  Google Scholar 

  12. De Bastiani G, Aldegheri R, Renzi Brivio L. The treatment of fractures with a dynamic axial fixator. J Bone Joint Surg Br. 1984;66:538–545.

    PubMed  Google Scholar 

  13. Duda GN, Kirchner H, Wilke HJ, Claes L. A method to determine the 3-D stiffness of fracture fixation devices and its application to predict inter-fragmentary movement. J Biomech. 1998;31:247–252.

    Article  PubMed  CAS  Google Scholar 

  14. Duda GN, Sollmann M, Sporrer S, Hoffmann JE, Kassi JP, Khodadadyan C, Raschke M. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin Orthop Relat Res. 2002;396:163–172.

    Article  PubMed  Google Scholar 

  15. Epari DR, Kassi JP, Schell H, Duda GN. Timely fracture-healing requires optimization of axial fixation stability. J Bone Joint Surg Am. 2007;89:1575–1585.

    Article  PubMed  Google Scholar 

  16. Epari DR, Schell H, Bail HJ, Duda GN. Instability prolongs the chondral phase during bone healing in sheep. Bone. 2006;38:864–870.

    Article  PubMed  Google Scholar 

  17. Foxworthy M, Pringle RM. Dynamization timing and its effect on bone healing when using the Orthofix Dynamic Axial Fixator. Injury. 1995;26:117–119.

    Article  PubMed  CAS  Google Scholar 

  18. Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br. 1985;67:650–655.

    PubMed  CAS  Google Scholar 

  19. Goodship AE, Lawes TJ, Rubin CT. Low-magnitude high-frequency mechanical signals accelerate and augment endochondral bone repair: preliminary evidence of efficacy. J Orthop Res. 2009;27:922–930.

    Article  PubMed  Google Scholar 

  20. Goodship AE, Watkins PE, Rigby HS, Kenwright J. The role of fixator frame stiffness in the control of fracture healing: an experimental study. J Biomech. 1993;26:1027–1035.

    Article  PubMed  CAS  Google Scholar 

  21. Hochberg Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika. 1988;75:800–802.

    Article  Google Scholar 

  22. Lienau J, Schell H, Duda GN, Seebeck P, Muchow S, Bail HJ. Initial vascularization and tissue differentiation are influenced by fixation stability. J Orthop Res. 2005;23:639–645.

    Article  PubMed  Google Scholar 

  23. Lienau J, Schell H, Epari DR, Schutze N, Jakob F, Duda GN, Bail HJ. CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability. J Orthop Res. 2006;24:254–262.

    Article  PubMed  CAS  Google Scholar 

  24. Mark H, Bergholm J, Nilsson A, Rydevik B, Stromberg L. An external fixation method and device to study fracture healing in rats. Acta Orthop Scand. 2003;74:476–482.

    Article  PubMed  Google Scholar 

  25. Mark H, Nilsson A, Nannmark U, Rydevik B. Effects of fracture fixation stability on ossification in healing fractures. Clin Orthop Relat Res. 2004;419:245–250.

    Article  PubMed  Google Scholar 

  26. Mark H, Rydevik B. Torsional stiffness in healing fractures: influence of ossification. An experimental study in rats. Acta Orthop. 2005;76:428–433.

    PubMed  Google Scholar 

  27. McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br. 1978;60:150–162.

    PubMed  Google Scholar 

  28. Noordeen MH, Lavy CB, Shergill NS, Tuite JD, Jackson AM. Cyclical micromovement and fracture healing. J Bone Joint Surg Br. 1995;77:645–648.

    PubMed  CAS  Google Scholar 

  29. Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res. 2007;25:941–950.

    Article  PubMed  CAS  Google Scholar 

  30. Palomares KT, Gleason RE, Mason ZD, Cullinane DM, Einhorn TA, Gerstenfeld LC, Morgan EF. Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J Orthop Res. 2009;27:1123–1132.

    Article  PubMed  Google Scholar 

  31. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002;84:1093–1110.

    Article  PubMed  Google Scholar 

  32. Strube P, Mehta M, Putzier M, Matziolis G, Perka C, Duda GN. A new device to control mechanical environment in bone defect healing in rats. J Biomech. 2008;41:2696–2702.

    Article  PubMed  Google Scholar 

  33. Utvag S, Korsnes L, Rindal D, Reikeras O. Influence of flexible nailing in the later phase of fracture healing: strength and mineralization in rat femora. J Orthop Sci. 2001;6:576–584.

    Article  PubMed  CAS  Google Scholar 

  34. Utvag S, Rindal D, Reikeras O. Effects of torsional rigidity on fracture healing: strength and mineralization in rat femora. J Orthop Trauma. 1999;13:212–219.

    Article  PubMed  CAS  Google Scholar 

  35. Wehner T, Claes L, Niemeyer F, Nolte D, Simon U. Influence of the fixation stability on the healing—time a numerical study of a patient-specific fracture healing process. Clin Biomech Bristol, Avon. 2010;25:606–612.

    Article  Google Scholar 

  36. Williams EA, Rand JA, An KN, Chao EY, Kelly PJ. The early healing of tibial osteotomies stabilized by one-plane or two-plane external fixation. J Bone Joint Surg Am. 1987;69:355–365.

    PubMed  CAS  Google Scholar 

  37. Willie B, Adkins K, Zheng X, Simon U, Claes L. Mechanical characterization of external fixator stiffness for a rat femoral fracture model. J Orthop Res. 2009;27:687–693.

    Article  PubMed  Google Scholar 

  38. Wiss DA, Brien WW, Stetson WB. Interlocked nailing for treatment of segmental fractures of the femur. J Bone Joint Surg Am. 1990;72:724–728.

    PubMed  CAS  Google Scholar 

  39. Wiss DA, Stetson WB. Unstable fractures of the tibia treated with a reamed intramedullary interlocking nail. Clin Orthop Relat Res. 1995;315:56–63.

    PubMed  Google Scholar 

  40. Wu CC. The effect of dynamization on slowing the healing of femur shaft fractures after interlocking nailing. J Trauma. 1997;43:263–267.

    Article  PubMed  CAS  Google Scholar 

  41. Wu CC, Chen WJ. Healing of 56 segmental femoral shaft fractures after locked nailing: poor results of dynamization. Acta Orthop Scand. 1997;68:537–540.

    Article  PubMed  CAS  Google Scholar 

  42. Wu CC, Shih CH. Effect of dynamization of a static interlocking nail on fracture healing. Can J Surg. 1993;36:302–306.

    PubMed  CAS  Google Scholar 

  43. Wu JJ, Shyr HS, Chao EY, Kelly PJ. Comparison of osteotomy healing under external fixation devices with different stiffness characteristics. J Bone Joint Surg Am. 1984;66:1258–1264.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Anja Peters for her substantial contributions to the histologic analysis, Ursula Maile and Marion Tomo for their assistance with histologic preparation, and Dr. Christine Bausewein and John Besse for their help during the operative procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Ignatius DVM.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

Each author certifies that his or her institution has approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

About this article

Cite this article

Willie, B.M., Blakytny, R., Glöckelmann, M. et al. Temporal Variation in Fixation Stiffness Affects Healing by Differential Cartilage Formation in a Rat Osteotomy Model. Clin Orthop Relat Res 469, 3094–3101 (2011). https://doi.org/10.1007/s11999-011-1866-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-011-1866-2

Keywords

Navigation