Skip to main content
Log in

Degradation Improves Tissue Formation in (Un)Loaded Chondrocyte-laden Hydrogels

  • Symposium: Clinically Relevant Strategies for Treating Cartilage and Meniscal Pathology
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Photopolymerizable poly(ethylene glycol) (PEG) hydrogels offer a platform to deliver cells in vivo and support three-dimensional cell culture but should be designed to degrade in sync with neotissue development and endure the physiologic environment.

Questions/purposes

We asked whether (1) incorporation of degradation into PEG hydrogels facilitates tissue development comprised of essential cartilage macromolecules; (2) with early loading before pericellular matrix formation, the duration of load affects matrix production; and (3) dynamic loading in general influences macroscopic tissue development.

Methods

Primary bovine chondrocytes were encapsulated in hydrogels (n = 3 for each condition). The independent variables were hydrogel degradation (nondegrading PEG and degrading oligo(lactic acid)-b-PEG-b-oligo(lactic acid) [PEG-LA]), culture condition (free swelling, unconfined dynamic compressive loading applied intermittently for 1 or 4 weeks), and time (up to 28 days). The dependent variables were neotissue deposition through biochemical contents, immunohistochemistry, and compressive modulus.

Results

Degradation led to 2.3- and 2.9-fold greater glycosaminoglycan and collagen contents, respectively; macroscopic cartilage-like tissue formation comprised of aggrecan, collagen II and VI, link protein, and decorin; but decreased moduli. Loading, applied early or throughout culture, did not affect neotissue content in either hydrogel but affected neotissue spatial distribution in degrading hydrogels where 4 weeks of loading appeared to enhance hydrogel degradation resulting in tissue defects.

Conclusions

PEG-LA hydrogels led to macroscopic tissue development comprised of key cartilage macromolecules under loading, but hydrogel degradation requires further tuning.

Clinical Relevance

PEG-LA hydrogels have potential for delivering chondrocytes in vivo to replace damaged cartilage with a tissue-engineered native equivalent, overcoming many limitations associated with current clinical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2A–D
Fig. 3
Fig. 4
Fig. 5A–C
Fig. 6
Fig. 7A–C

Similar content being viewed by others

References

  1. Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN. In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release. 2002;78:199–209.

    Article  PubMed  CAS  Google Scholar 

  2. Babalola OM, Bonassar LJ. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage. J Biomech Eng. 2009;131:061014.

    Article  PubMed  Google Scholar 

  3. Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77–95.

    Article  PubMed  Google Scholar 

  4. Bryant SJ. Photocrosslinkable Hydrogels as Cell-scaffolds for Tissue Engineering Cartilage: A Study Examining Gel Properties, Degradation, Mechanical Loading, and Clinical Relevance. Boulder, CO: Chemical Engineering, University of Colorado-Boulder; 2002.

    Google Scholar 

  5. Bryant SJ, Anseth KS. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res. 2002;59:63–72.

    Article  PubMed  CAS  Google Scholar 

  6. Bryant SJ, Anseth KS. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res A. 2003;64:70–79.

    Article  PubMed  Google Scholar 

  7. Bryant SJ, Anseth KS, Lee DA, Bader DL. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J Orthop Res. 2004;22:1143–1149.

    Article  PubMed  CAS  Google Scholar 

  8. Bryant SJ, Bender RJ, Durand KL, Anseth KS. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol Bioeng. 2004;86:747–755.

    Article  PubMed  CAS  Google Scholar 

  9. Bryant SJ, Durand KL, Anseth KS. Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. J Biomed Mater Res A. 2003;67:1430–1436.

    Article  PubMed  Google Scholar 

  10. Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulfated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986;883:173–177.

    PubMed  CAS  Google Scholar 

  11. Gillogly SD, Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther. 1998;28:241–251.

    PubMed  CAS  Google Scholar 

  12. Grodzinsky AJ, Levenston ME, Jin M, Frank EH. Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng. 2000;2:691–713.

    Article  PubMed  CAS  Google Scholar 

  13. Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, Rorabeck C, Poole AR. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest. 1994;93:1722–1732.

    Article  PubMed  CAS  Google Scholar 

  14. Hung CT, Mauck RL, Wang CCB, Lima EG, Ateshian GA. A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann Biomed Eng. 2004;32:35–49.

    Article  PubMed  Google Scholar 

  15. Hunter CJ, Mouw JK, Levenston ME. Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Osteoarthritis Cartilage. 2004;12:117–130.

    Article  PubMed  Google Scholar 

  16. Kisiday JD, Jin MS, DiMicco MA, Kurz B, Grodzinsky AJ. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J Biomech. 2004;37:595–604.

    Article  PubMed  Google Scholar 

  17. Kisiday JD, Lee JH, Siparsky PN, Frisbie DD, Flannery CR, Sandy JD, Grodzinsky AJ. Catabolic responses of chondrocyte-seeded peptide hydrogel to dynamic compression. Ann Biomed Eng. 2009;37:1368–1375.

    Article  PubMed  Google Scholar 

  18. Knight MM, Lee DA, Bader DL. The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochim Biophys Acta. 1998;1405:67–77.

    Article  PubMed  CAS  Google Scholar 

  19. Lee CR, Grodzinsky AJ, Spector M. Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. J Biomed Mater Res A. 2003;64:560–569.

    Article  PubMed  CAS  Google Scholar 

  20. Lee DA, Bader DL. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res. 1997;15:181–188.

    Article  PubMed  Google Scholar 

  21. Lin-Gibson S, Bencherif S, Cooper JA, Wetzel SJ, Antonucci JM, Vogel BM, Horkay F, Washburn NR. Synthesis and characterization of PEG dimethacrylates and their hydrogels. Biomacromolecules. 2004;5:1280–1287.

    Article  PubMed  CAS  Google Scholar 

  22. Mark KVD. Structure, biosynthesis, and gene regulation of collagens in cartilage and bones. In: Seibel MJ, Robins SP, Bilezikian JP, eds. Dynamics of Bone and Cartilage Metabolism. Vol 1. 2nd ed. Burlington, VT: Elsevier; 2006:3–40.

    Chapter  Google Scholar 

  23. Martin JA, Buckwalter JA. Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J. 2001;21:1–7.

    PubMed  CAS  Google Scholar 

  24. McLaren AC, Blokker CP, Fowler PJ, Roth JN, Rock MG. Arthroscopic débridement of the knee for osteoarthrosis. Can J Surg. 1991;34:595–598.

    PubMed  CAS  Google Scholar 

  25. Metters AT, Anseth KS, Bowman CN. Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer. 2000;41:3993–4004.

    Article  CAS  Google Scholar 

  26. Metters AT, Bowman CN, Anseth KS. A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. J Phys Chem B. 2000;104:7043–7049.

    Article  CAS  Google Scholar 

  27. Metters AT, Bowman CN, Anseth KS. Verification of scaling laws for degrading PLA-b-PEG-b-PLA hydrogels. AIChE J. 2001;47:1432–1437.

    Article  CAS  Google Scholar 

  28. Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev. 2008;14:149–165.

    Article  PubMed  CAS  Google Scholar 

  29. Nicodemus GD, Bryant SJ. Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels. Osteoarthritis Cartilage. 2010;18:126–137.

    Article  PubMed  CAS  Google Scholar 

  30. Nicodemus GD, Shiplet KA, Kaltz SR, Bryant SJ. Dynamic compressive loading influences degradation behavior of PEG-PLA hydrogels. Biotechnol Bioeng. 2009;102:948–959.

    Article  PubMed  CAS  Google Scholar 

  31. Nicodemus GD, Villanueva I, Bryant SJ. Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels. J Biomed Mater Res A. 2007;83:323–331.

    PubMed  Google Scholar 

  32. Robling AG, Burr DB, Turner CH. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading. J Bone Miner Res. 2000;15:1596–1602.

    Article  PubMed  CAS  Google Scholar 

  33. Sah RL, Kim YJ, Doong JYH, Grodzinsky AJ, Plaas AH, Sandy JD. Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res. 1989;7:619–636.

    Article  PubMed  CAS  Google Scholar 

  34. Sawhney AS, Pathak CP, Hubbell JA. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules. 1993;26:581–587.

    Article  CAS  Google Scholar 

  35. Sledge SL. Microfracture techniques in the treatment of osteochondral injuries. Clin Sports Med. 2001;20:365–377.

    Article  PubMed  CAS  Google Scholar 

  36. Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ. The microfracture technic in the management of complete cartilage defects in the knee joint [in German]. Orthopade. 1999;28:26–32.

    PubMed  CAS  Google Scholar 

  37. Villanueva I, Hauschulz DS, Mejic D, Bryant SJ. Static and dynamic compressive strains influence nitric oxide production and chondrocyte bioactivity when encapsulated in PEG hydrogels of different crosslinking densities. Osteoarthritis Cartilage. 2008;16:909–918.

    Article  PubMed  CAS  Google Scholar 

  38. Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA. A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage. Osteoarthritis Cartilage. 2006;14:323–330.

    Article  PubMed  CAS  Google Scholar 

  39. Woessner JF. Determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Arch Biochem Biophys. 1961;93:440–447.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The antibodies developed by B. Caterson (link protein) and G. A. Pringle (decorin) used here were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the Department of Biology, University of Iowa, Iowa City, IA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie J. Bryant PhD.

Additional information

The institution of the authors has received funding from the NIH/NIDCR (K22DE016608) and the NIH/NIAMS (R01AR053126); one of the authors (JJR) has received funding from the National Institute of Health’s Leadership Training in Pharmaceutical Biotechnology Program; two of the authors (JJR, GDN) have received funding from the Department of Education’s Graduate Assistantships in Areas of National Need (GAANN) fellowships.

About this article

Cite this article

Roberts, J.J., Nicodemus, G.D., Greenwald, E.C. et al. Degradation Improves Tissue Formation in (Un)Loaded Chondrocyte-laden Hydrogels. Clin Orthop Relat Res 469, 2725–2734 (2011). https://doi.org/10.1007/s11999-011-1823-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-011-1823-0

Keywords

Navigation