Skip to main content

Advertisement

Log in

Clinical Cartilage Restoration: Evolution and Overview

  • Symposium: Clinically Relevant Strategies for Treating Cartilage and Meniscal
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Clinical cartilage restoration is evolving, with established and emerging technologies. Randomized, prospective studies with adequate power comparing the myriad of surgical techniques used to treat chondral injuries are still lacking and it remains a challenge for the surgeon treating patients to make evidence-based decisions.

Questions/purposes

We reviewed the history of the major cartilage repair/restorative procedures, indications for currently available repair/restorative procedures, and postoperative management.

Methods

We performed searches using MEDLINE and cartilage-specific key words to identify all English-language literature. Articles were selected based on their contributions to our current understanding of the basic science and clinical treatment of articular cartilage lesions or historical importance. We then selected 77 articles, two of which are articles of historical importance.

Results

Current cartilage restorative techniques include débridement, microfracture, osteochondral fragment repair, osteochondral allograft, osteochondral autograft, and autologous chondrocyte transplantation. Pending techniques include two-staged cell-based therapies integrated into a variety of scaffolds, single-stage cell-based therapy, and augmentation of marrow stimulation, each with suggested indications including lesion size, location, and activity demands of the patient. The literature demonstrates variable improvements in pain and function contingent upon multiple variables including indications and application.

Conclusions

For the patient with symptomatic chondral injury, numerous techniques are available to the surgeon to relieve pain and improve function. Until rigorous clinical trials (prospective, adequately powered, randomized control) are available, treatment decisions should be guided by expert extrapolation of the available literature based in historically sound principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahmad CS, Cohen ZA, Levine WN, Ateshian GA, Mow VC. Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med. 2001;29:201–206.

    PubMed  CAS  Google Scholar 

  2. Ahmed TA, Hincke MT. Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng Part B Rev. 2010;16:305–329.

    Article  PubMed  CAS  Google Scholar 

  3. Bobic V, Morgan C, Carter T. Osteochondral autologous graft transfer. Oper Tech Sports Med. 2000;8:168–178.

    Article  Google Scholar 

  4. Bonner KF, Daner W, Yao JQ. 2-year postoperative evaluation of a patient with a symptomatic full-thickness patellar cartilage defect repaired with particulated juvenile cartilage tissue. J Knee Surg. 2010;23:109–114.

    Article  PubMed  Google Scholar 

  5. Brittberg M, Peterson L. Introduction to an articular cartilage classification. ICRS Newsletter. 1998;1:5–8.

    Google Scholar 

  6. Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 2003;85(Suppl 2):58–69.

    PubMed  Google Scholar 

  7. Bugbee WD, Convery FR. Osteochondral allograft transplantation. Clin Sports Med. 1999;18:67–75.

    Article  PubMed  CAS  Google Scholar 

  8. Bujia J, Alsalameh S, Naumann A, Wilmes E, Sittinger M, Burmester GR. Humoral immune response against minor collagens Type IX and XI in patients with cartilage graft resorption after reconstructive surgery. Ann Rheum Dis. 1994;53:229–234.

    Article  PubMed  CAS  Google Scholar 

  9. Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, Shive MS, Buschmann MD. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res. 2009;27:1432–1438.

    Article  PubMed  Google Scholar 

  10. Chu CR, Convery FR, Akeson WH, Meyers M, Amiel D. Articular cartilage transplantation: clinical results in the knee. Clin Orthop Relat Res. 1999;360:159–168.

    Article  PubMed  Google Scholar 

  11. Chubinskaya S, Merrihew C, Cs-Szabo G, Mollenhauer J, McCartney J, Rueger DC, Kuettner KE. Human articular chondrocytes express osteogenic protein-1. J Histochem Cytochem. 2000;48:239–250.

    Article  PubMed  CAS  Google Scholar 

  12. Cohen NP, Foster RJ, Mow VC. Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sports Phys Ther. 1998;28:203–215.

    PubMed  CAS  Google Scholar 

  13. Cole BJ, Frederick RW, Levy AS, Zaslav KR. Management of a 37 year-old man with recurrent knee pain. J Clin Outcomes Manag. 1999;6:46–57.

    Google Scholar 

  14. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456–460.

    Article  PubMed  CAS  Google Scholar 

  15. Davidson PA, Rivenburgh DW, Dawson PE, Rozin R. Clinical, histologic, and radiographic outcomes of distal femoral resurfacing with hypothermically stored osteoarticular allografts. Am J Sports Med. 2007;35:1082–1090.

    Article  PubMed  Google Scholar 

  16. Derrett S, Stoeks E, James M, Bartlett W, Bentley G. Costs and health status outcomes following autologous chondrocyte implantation (ACI) and mosaicplasty: costs and health status outcomes. J Bone Joint Surg Br. 2006;88:254.

    Google Scholar 

  17. Ficat RP, Ficat C, Gedeon P, Toussaint JB. Spongialization: a new treatment for diseased patellae. Clin Orthop Relat Res. 1979;144:74–83.

    PubMed  Google Scholar 

  18. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, Stokol T, Cheetham J, Nixon AJ. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92:1927–1937.

    Article  PubMed  Google Scholar 

  19. Friedlaender GE. Immune responses to osteochondral allografts: current knowledge and future directions. Clin Orthop Relat Res. 1983;174:58–68.

    PubMed  Google Scholar 

  20. Friedlaender GE, Horowitz MC. Immune responses to osteochondral allografts: nature and significance. Orthopedics. 1992;15:1171–1175.

    PubMed  CAS  Google Scholar 

  21. Friedlaender GE, Strong DM, Sell KW. Studies on the antigenicity of bone. II. Donor-specific anti-HLA antibodies in human recipients of freeze-dried allografts. J Bone Joint Surg Am. 1984;66:107–112.

    PubMed  CAS  Google Scholar 

  22. Garretson R, Katolik L, Verma N, Beck P, Bach B, Cole B. Contact pressure at osteochondral donor sites in the patellofemoral joint. Am J Sports Med. 2004;32:967–974.

    Article  PubMed  Google Scholar 

  23. Ghazavi MT, Pritzker KP, Davis AM, Gross AE. Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg Br. 1997;79:1008–1013.

    Article  PubMed  CAS  Google Scholar 

  24. Gomoll A, Probst C, Farr J, Cole B, Minas T. Use of a Type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation. Am J Sports Med. 2009;37:205–235.

    Article  Google Scholar 

  25. Gomoll AH, Kang RW, Chen AL, Cole BJ. Triad of cartilage restoration for unicompartmental arthritis treatment in young patients: meniscus allograft transplantation, cartilage repair and osteotomy. J Knee Surg. 2009;22:137–141.

    Article  PubMed  Google Scholar 

  26. Gross AE, Langer F, Houpt J, Pritzker K, Friedlaender G. Allotransplantation of partial joints in the treatment of osteoarthritis of the knee. Transplant Proc. 1976;8:129–132.

    PubMed  CAS  Google Scholar 

  27. Gross AE, Silverstein EA, Falk J, Falk R, Langer F. The allotransplantation of partial joints in the treatment of osteoarthritis of the knee. Clin Orthop Relat Res. 1975;108:7–14.

    Article  PubMed  Google Scholar 

  28. Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003;85(Suppl 2):25–32.

    PubMed  Google Scholar 

  29. Hangody L, Kárpáti Z. [New possibilities in the management of severe circumscribed cartilage damage in the knee] [in Hungarian]. Magy Traumatol Ortop Kezseb Plasztikai Seb. 1994;37:237–243.

    PubMed  CAS  Google Scholar 

  30. Hangody L, Kish G, Kárpáti Z, Udvarhelyi I, Szigeti I, Bély M. Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics. 1998;21:751–756.

    PubMed  CAS  Google Scholar 

  31. Huntley JS, Bush PG, McBirnie JM, Simpson AH, Hall AC. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg Am. 2005;87:351–360.

    Article  PubMed  CAS  Google Scholar 

  32. Irrgang JJ, Pezzullo D. Rehabilitation following surgical procedures to address articular cartilage lesions in the knee. J Orthop Sports Phys Ther. 1998;28:232–240.

    PubMed  CAS  Google Scholar 

  33. Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy. 1986;2:54–69.

    Article  PubMed  CAS  Google Scholar 

  34. Jomha NM, Lavoie G, Muldrew K, Schachar NS, McGann LE. Cryopreservation of intact human articular cartilage. J Orthop Res. 2002;20:1253–1255.

    Article  PubMed  CAS  Google Scholar 

  35. Kang RW, Friel NA, Williams JM, Cole BJ, Wimmer MA. Effect of impaction sequence on osteochondral graft damage: the role of repeated and varying loads. Am J Sports Med. 2010;38:105–113.

    Article  PubMed  Google Scholar 

  36. Klein-Nulend J, Louwerse RT, Heyligers IC, Wuisman PI, Semeins CM, Goei SW, Burger EH. Osteogenic protein (OP-1, BMP-7) stimulates cartilage differentiation of human and goat perichondrium tissue in vitro. J Biomed Mater Res. 1998;40:614–620.

    Article  PubMed  CAS  Google Scholar 

  37. Klein-Nulend J, Semeins CM, Mulder JW, Winters HA, Goei SW, Ooms ME, Burger EH. Stimulation of cartilage differentiation by osteogenic protein-1 in cultures of human perichondrium. Tissue Eng. 1998;4:305–313.

    Article  PubMed  CAS  Google Scholar 

  38. Knutsen G, Drogset JO, Engebretsen L, Grøntvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O. A randomized trial comparing autologous chondrocyte implantation with microfracture: findings at five years. J Bone Joint Surg Am. 2007;89:2105–2112.

    Article  PubMed  Google Scholar 

  39. Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grøntvedt T, Solheim E, Strand T, Roberts S, Isaksen V, Johansen O. Autologous chondrocyte implantation compared with microfracture in the knee: a randomized trial. J Bone Joint Surg Am. 2004;86:455–464.

    PubMed  Google Scholar 

  40. Koh JL, Wirsing K, Lautenschlager E, Zhang LO. The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study. Am J Sports Med. 2004;32:317–320.

    Article  PubMed  Google Scholar 

  41. Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P, Ghanem N, Uhl M, Südkamp N. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy. 2006;22:1180–1186.

    Article  PubMed  Google Scholar 

  42. Lee SJ, Aadalen KJ, Malaviya P, Lorenz EP, Hayden JK, Farr J, Kang RW, Cole BJ. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med. 2006;34:1334–1344.

    Article  PubMed  Google Scholar 

  43. Lexer E. The use of free osteoplasty together with trials on arthrodesis and joint transplantation [in German]. Archiv fur klin Chirurgie. 1908;86:939–954.

    Google Scholar 

  44. Lexer E. Joint transplantation and arthroplasty. Surg Gynecol Obstet. 1925;40:782–809.

    Google Scholar 

  45. Lexer E. The use of free osteoplasty together with trials on arthrodesis and joint transplantation. Archiv fur klin Chirurgie. 1908;86:939–954. Clin Orthop Relat Res. 2008;466:1771–1776.

    Google Scholar 

  46. Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S, Stauffer E; International Cartilage Repair Society. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am. 2003;85(Suppl 2):45–57.

    PubMed  Google Scholar 

  47. Malinin TI, Mnaymneh W, Lo HK, Hinkle DK. Cryopreservation of articular cartilage: ultrastructural observations and long-term results of experimental distal femoral transplantation. Clin Orthop Relat Res. 1994;303:18–32.

    PubMed  Google Scholar 

  48. McCulloch PC, Kang RW, Sobhy MH, Hayden JK, Cole BJ. Prospective evaluation of prolonged fresh osteochondral allograft transplantation of the femoral condyle: minimum 2-year follow-up. Am J Sports Med. 2007;35:411–420.

    Article  PubMed  Google Scholar 

  49. McGinty G, Irrgang JJ, Pezzullo D. Biomechanical considerations for rehabilitation of the knee. Clin Biomech (Bristol). 2000;15:160–166.

    Article  CAS  Google Scholar 

  50. McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc. 2008;16:196–201.

    Article  PubMed  Google Scholar 

  51. Minas T. Chondrocyte implantation in the repair of chondral lesions of the knee: economics and quality of life. Am J Orthop. 1998;27:739–744.

    PubMed  CAS  Google Scholar 

  52. Nho SJ, Pensak MJ, Seigerman DA, Cole BJ. Rehabilitation after autologous chondrocyte implantation in athletes. Clin Sports Med. 2010;29:267–282, viii.

    Google Scholar 

  53. Niemeyer P, Köstler W, Salzmann GM, Lenz P, Kreuz PC, Südkamp NP. Autologous chondrocyte implantation for treatment of focal cartilage defects in patients age 40 years and older: a matched-pair analysis with 2-year follow-up. Am J Sports Med. 2010;38:2410–2416.

    Article  PubMed  Google Scholar 

  54. O’Driscoll SW, Keeley FW, Salter RB. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion: an experimental investigation in the rabbit. J Bone Joint Surg Am. 1986;68:1017–1035.

    PubMed  Google Scholar 

  55. Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br. 1961;43:752–757.

    PubMed  Google Scholar 

  56. Pallante AL, Bae WC, Chen AC, Görtz S, Bugbee WD, Sah RL. Chondrocyte viability is higher after prolonged storage at 37 degrees C than at 4 degrees C for osteochondral grafts. Am J Sports Med. 2009;37(Suppl 1):24S–32S.

    Article  PubMed  Google Scholar 

  57. Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A. Autologous chondrocyte transplantation: biomechanics and long-term durability. Am J Sports Med. 2002;30:2–12.

    PubMed  Google Scholar 

  58. Peterson L, Menche D, Grande D, Klein M, Burmester G, Pugh J, Pitman M. Chondrocyte transplantation—an experimental model in the rabbit. Trans Orthop Res Soc. 1984;9:218.

    Google Scholar 

  59. Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–234.

    Article  PubMed  Google Scholar 

  60. Pridie K. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg Am. 1959;41:618–619.

    Google Scholar 

  61. Pritzker KP, Gross AE, Langer F, Luk SC, Houpt JB. Articular cartilage transplantation. Hum Pathol. 1977;8:635–651.

    Article  PubMed  CAS  Google Scholar 

  62. Pylawka TK, Wimmer M, Cole BJ, Virdi AS, Williams JM. Impaction affects cell viability in osteochondral tissues during transplantation. J Knee Surg. 2007;20:105–110.

    PubMed  Google Scholar 

  63. Reinold MM, Wilk KE, Macrina LC, Dugas JR, Cain EL. Current concepts in the rehabilitation following articular cartilage repair procedures in the knee. J Orthop Sports Phys Ther. 2006;36:774–794.

    PubMed  Google Scholar 

  64. Rosenberger RE, Gomoll AH, Bryant T, Minas T. Repair of large chondral defects of the knee with autologous chondrocyte implantation in patients 45 years or older. Am J Sports Med. 2008;36:2336–2344.

    Article  PubMed  Google Scholar 

  65. Rue JP, Yanke AB, Busam ML, McNickle AG, Cole BJ. Prospective evaluation of concurrent meniscus transplantation and articular cartilage repair: minimum 2-year follow-up. Am J Sports Med. 2008;36:1770–1778.

    Article  PubMed  Google Scholar 

  66. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage: an experimental investigation in the rabbit. J Bone Joint Surg Am. 1980;62:1232–1251.

    PubMed  CAS  Google Scholar 

  67. Saris DBF, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F, Lagae K, van der Bauwhede J, Vandenneucker H, Yang KG, Jelic M, Verdonk R, Veulemans N, Bellemans J, Luyten FP. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med. 2008;36:235–246.

    Article  PubMed  Google Scholar 

  68. Sirlin CB, Brossmann J, Boutin RD, Pathria MN, Convery FR, Bugbee W, Deutsch R, Lebeck LK, Resnick D. Shell osteochondral allografts of the knee: comparison of MR imaging findings and immunologic responses. Radiology. 2001;219:35–43.

    PubMed  CAS  Google Scholar 

  69. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003;19:477–484.

    Article  PubMed  Google Scholar 

  70. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;391(Suppl):S362–S369.

    Article  PubMed  Google Scholar 

  71. Steinwachs M. New technique for cell-seeded collagen-matrix-supported autologous chondrocyte transplantation. Arthroscopy. 2009;25:208–211.

    Article  PubMed  Google Scholar 

  72. Williams JM, Virdi AS, Pylawka TK, Edwards RB, Markel MD, Cole BJ. Prolonged-fresh preservation of intact whole canine femoral condyles for the potential use as osteochondral allografts. J Orthop Res. 2005;23:831–837.

    Article  PubMed  Google Scholar 

  73. Williams SK, Amiel D, Ball ST, Allen RT, Wong VW, Chen AC, Sah RL, Bugbee WD. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Joint Surg Am. 2003;85:2111–2120.

    PubMed  Google Scholar 

  74. Xia Z, Murray D, Hulley PA, Triffitt JT, Price AJ. The viability and proliferation of human chondrocytes following cryopreservation. J Bone Joint Surg Br. 2008;90:1245–1248.

    Article  PubMed  CAS  Google Scholar 

  75. Yagishita K, Sekiya I, Sakaguchi Y, Shinomiya K, Muneta T. The effect of hyaluronan on tendon healing in rabbits. Arthroscopy. 2005;21:1330–1336.

    Article  PubMed  Google Scholar 

  76. Yagishita K, Thomas BJ. Use of allograft for large Hill-Sachs lesion associated with anterior glenohumeral dislocation: a case report. Injury. 2002;33:791–794.

    Article  PubMed  Google Scholar 

  77. Zhang D, Johnson LJ, Hsu HP, Spector M. Cartilaginous deposits in subchondral bone in regions of exposed bone in osteoarthritis of the human knee: histomorphometric study of PRG4 distribution in osteoarthritic cartilage. J Orthop Res. 2007;25:873–883.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Farr MD.

Additional information

Dr. Farr has received research or institutional support from Zimmer, Inc (Warsaw, IN) and DePuy Mitek, Inc (Raynham, MA); miscellaneous nonincome support, commercially derived honoraria, or other nonresearch related-funding from Zimmer; has received royalties from DePuy Mitek; and is a consultant/advisory board member for Johnson and Johnson Co (New Brunswick, NJ) and Zimmer. Dr. Cole has received research or institutional support from Zimmer, DePuy Mitek, and Arthrex, Inc (Naples, FL); has received royalties from Zimmer and DePuy Orthopaedics, Inc (Warsaw, IN); and is a consultant for Zimmer and DePuy. Each additional author certifies that he has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

This work was performed at the OrthoIndy Cartilage Restoration Center of Indiana.

About this article

Cite this article

Farr, J., Cole, B., Dhawan, A. et al. Clinical Cartilage Restoration: Evolution and Overview. Clin Orthop Relat Res 469, 2696–2705 (2011). https://doi.org/10.1007/s11999-010-1764-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-010-1764-z

Keywords

Navigation