Skip to main content
Log in

In Vivo Normal Knee Kinematics: Is Ethnicity or Gender an Influencing Factor?

  • Symposium: Papers Presented at the Annual Meetings of the Knee Society
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

In vivo studies have suggested Caucasians achieve lower average knee flexion than non-Western populations. Some previous studies have also suggested gender may influence condylar AP translation and axial rotation, while others report an absence of such an influence.

Questions/purposes

We determined whether different ethnic and gender groups residing in the United States had different knee translations and rotations.

Methods

Three-dimensional knee rotations and translations were determined for 72 healthy subjects (24 Caucasian men, 24 Caucasian women, 13 Japanese men, 11 Japanese women) from full extension to maximum flexion using a fluoroscopic technique, under in vivo, weightbearing conditions.

Results

Although we observed substantial variability in all groups, small differences between groups were found, especially in deep flexion. Japanese women and men and Caucasian women achieved higher maximum flexion (153°, 151°, and 152°, respectively) than Caucasian men (146°). External rotation was higher for these three groups than for Caucasian men. The medial condyle remained more anterior for Caucasian women and all Japanese subjects than for Caucasian men, possibly leading to greater axial rotation and flexion, observed for these three groups.

Conclusion

We identified small differences in maximum flexion between genders and ethnic groups. While no differences were identified in the lateral condyle translation, the medial condyle remained more stationary and more anterior for the groups that achieved highest (and similar) maximum flexion. Therefore, it may be important for future implant designs to incorporate these characteristics, such that only the lateral condyle experiences greater posterior femoral rollback, while the medial condyle remains more stationary throughout flexion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A–B
Fig. 5A–F
Fig. 6
Fig. 7A–B
Fig. 8A–B
Fig. 9A–B
Fig. 10A–B

Similar content being viewed by others

References

  1. Ahlberg A, Moussa M, Al-Nahdi M. On geographical variations in the normal range of joint motion. Clin Orthop Relat Res. 1988;234:229–231.

    PubMed  Google Scholar 

  2. Anderson B, Burke E. Scientific, medical, and practical aspects of stretching. Clin Sports Med. 1991;10:63–86.

    CAS  PubMed  Google Scholar 

  3. Andriacchi TP, Dyrby CO, Johnson TS. The use of functional analysis in evaluating knee kinematics. Clin Orthop Relat Res. 2003;410:44–53.

    Article  PubMed  Google Scholar 

  4. Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res. 2001;388:157–166.

    Article  PubMed  Google Scholar 

  5. Austin B. Physical activity/exercise. In: Olshansky E, ed. Integrated Women’s Health: Holistic Approaches for Comprehensive Care. Gaithersburg, MD: Aspen Publishers, Inc; 2000:103.

  6. Barnett C. Locking at the knee joint. J Anat. 1953;87:91–95.

    CAS  PubMed  Google Scholar 

  7. Blaha J, Wojtys E. Motion and stability of the knee. In: Scott WN, ed. Surgery of the Knee. 4th ed. New York, NY: Churchill Livingstone; 2005:227–239.

  8. Cates HE, Komistek RD, Mahfouz MR, Schmidt MA, Anderle M. In vivo comparison of knee kinematics for subjects having either a posterior stabilized or cruciate retaining high-flexion total knee arthroplasty. J Arthroplasty. 2008;23:1057–1067.

    Article  PubMed  Google Scholar 

  9. Chappell JD, Yu B, Kirkendall DT, Garrett WE. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med. 2002;30:261–267.

    PubMed  Google Scholar 

  10. Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard Steadman J. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol, Avon). 2003;18:662–669.

    Article  Google Scholar 

  11. DeFrate LE, Sun H, Gill TJ, Rubash HE, Li G. In vivo tibiofemoral contact analysis using 3D MRI-based knee models. J Biomech. 2004;37:1499–1504.

    Article  PubMed  Google Scholar 

  12. Dennis DA, Komistek RD, Colwell CE Jr, Ranawat CS, Scott RD, Thornhill TS, Lapp MA. In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res. 1998;356:47–57.

    Article  PubMed  Google Scholar 

  13. Dennis DA, Komistek RD, Hoff WA, Gabriel SM. In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop Relat Res. 1996;331:107–117.

    Article  PubMed  Google Scholar 

  14. Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–253.

    Article  PubMed  Google Scholar 

  15. Freeman MA. How the knee moves. Curr Orthop. 2001;15:444–450.

    Article  Google Scholar 

  16. Freeman MA, Pinskerova V. The movement of the knee studied by magnetic resonance imaging. Clin Orthop Relat Res. 2003;410:35–43.

    Article  PubMed  Google Scholar 

  17. Freeman MA, Pinskerova V. The movement of the normal tibio-femoral joint. J Biomech. 2005;38:197–208.

    Article  CAS  PubMed  Google Scholar 

  18. Fuss F. Principles and mechanisms of automatic rotation during terminal extension in the human knee joint. J Anat. 1992;180(Pt 2):297–304.

    PubMed  Google Scholar 

  19. Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–144.

    Article  CAS  PubMed  Google Scholar 

  20. Hallen L, Lindahl O. The “screw-home” movement in the knee joint. Acta Orthop Scand, 1966;37:97–106.

    Article  CAS  PubMed  Google Scholar 

  21. Hayter A. A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is conservative. Ann Stat. 1984;12:61–75.

    Article  Google Scholar 

  22. Hefzy MS, Kelly BP, Cooke TD. Kinematics of the knee joint in deep flexion: a radiographic assessment. Med Eng Phys. 1998;20:302–307.

    Article  CAS  PubMed  Google Scholar 

  23. Heitz NA, Eisenman PA, Beck CL, Walker JA. Hormonal changes throughout the menstrual cycle and increased anterior cruciate ligament laxity in females. J Athl Train. 1999;34:144–149.

    CAS  PubMed  Google Scholar 

  24. Hemmerich A, Brown H, Smith S, Marthandam SS, Wyss UP. Hip, knee, and ankle kinematics of high range of motion activities of daily living, J Orthop Res. 2006;24:770–781.

    Article  CAS  PubMed  Google Scholar 

  25. Hoff WA, Komistek RD, Dennis DA, Gabrietl SM, Walker SA. Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy. Clin Biomech (Bristol, Avon). 1998;13:455–472.

    Article  Google Scholar 

  26. Hollman JH, Deusinger RH, Van Dillen LR, Matava MJ. Gender differences in surface rolling and gliding kinematics of the knee. Clin Orthop Relat Res. 2003;413:208–221.

    Article  PubMed  Google Scholar 

  27. Hovinga KR, Lerner AL. Anatomic variations between Japanese and Caucasian populations in the healthy young adult knee joint. J Orthop Res. 2009;27:1191–1196.

    Article  PubMed  Google Scholar 

  28. Hsu WH, Fisk JA, Yamamoto Y, Debski RE, Woo SL. Differences in torsional joint stiffness of the knee between genders. Am J Sports Med. 2006;34:765–770.

    Article  PubMed  Google Scholar 

  29. Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br. 2000;82:1189–1195.

    Article  CAS  PubMed  Google Scholar 

  30. Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. a study of weight bearing and non-weight bearing knee kinematics using “interventional” MRI. J Biomech. 2005;38:269–276.

    Article  CAS  PubMed  Google Scholar 

  31. Komistek RD, Dennis DA, Mahfouz MR. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.

    Article  PubMed  Google Scholar 

  32. Komistek RD, Scott RD, Dennis DA, Yasgur D, Anderson DT, Hajner ME. In vivo comparison of femorotibial contact positions for Press-Fit posterior stabilized and posterior cruciate-retaining total knee arthroplasties. J Arthroplasty. 2002;17:209–216.

    Article  PubMed  Google Scholar 

  33. Mahfouz MR, Hoff WA, Komistek RD, Dennis DA. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imaging. 2003;22:1561–1574.

    Article  PubMed  Google Scholar 

  34. Mahfouz MR, Komistek RD, Dennis DA, Hoff WA. In vivo assessment of the kinematics in normal and anterior cruciate ligament-deficient knees. J Bone Joint Surg Am. 2004;86:56–61.

    PubMed  Google Scholar 

  35. Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech (Bristol, Avon) 2001;16:438–445.

    Article  CAS  Google Scholar 

  36. Martelli S, Pinskerova V. The shapes of the tibial and femoral articular surfaces in relation to tibiofemoral movement. J Bone Joint Surg Br. 2002;84:607–613.

    Article  CAS  PubMed  Google Scholar 

  37. Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MA, Yamano Y. Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br. 2000;82:1199–1200.

    Article  CAS  PubMed  Google Scholar 

  38. Noble PC, Gordon MJ, Weiss JM, Reddix RN, Conditt MA, Mathis KB. Does total knee replacement restore normal knee function? Clin Orthop Relat Res. 2005;431:157–165.

    Article  PubMed  Google Scholar 

  39. Pollard CD, Braun B, Hamill J. Influence of gender, estrogen and exercise on anterior knee laxity. Clin Biomech (Bristol, Avon). 2006;21:1060–1066.

    Google Scholar 

  40. Roaas A, Andersson GB. Normal range of motion of the hip, knee and ankle joints in male subjects, 30–40 years of age. Acta Orthop Scand. 1982;53:205–208.

    Article  CAS  PubMed  Google Scholar 

  41. Scarvell JM, Smith PN, Refshauge KM, Galloway H, Woods K. Comparison of kinematics in the healthy and ACL injured knee using MRI. J Biomech. 2005;38:255–262.

    Article  PubMed  Google Scholar 

  42. Sernert N, Kartus JT Jr, Ejerhed L, Karlsson J. Right and left knee laxity measurements: a prospective study of patients with anterior cruciate ligament injuries and normal control subjects. Arthroscopy. 2004;20:564–571.

    Article  PubMed  Google Scholar 

  43. Sharma L, Lou C, Felson DT, Dunlop DD, Kirwan-Mellis G, Hayes KW, Weinrach D, Buchanan TS. Laxity in healthy and osteoarthritic knees. Arthritis Rheum. 1999;42:861–870.

    Article  CAS  PubMed  Google Scholar 

  44. Sorrells RB, Stiehl JB, Voorhorst PE. Midterm results of mobile-bearing total knee arthroplasty in patients younger than 65 years. Clin Orthop Relat Res. 2001;390:182–189.

    Article  PubMed  Google Scholar 

  45. Stern SH, Insall JN. Posterior stabilized prosthesis: results after follow-up of nine to twelve years. J Bone Joint Surg Am. 1992;74:980–986.

    CAS  PubMed  Google Scholar 

  46. Varadarajan KM, Gill TJ, Freiberg AA, Rubash HE, Li G. Gender differences in trochlear groove orientation and rotational kinematics of human knees. J Orthop Res. 2009;27:871–878.

    Article  PubMed  Google Scholar 

  47. Villar RN, Solomon VK, Rangam J. Knee surgery and the Indian knee. The importance of the preservation of flexion. Trop Doct. 1989;19:21–24.

    CAS  PubMed  Google Scholar 

  48. Wojtys EM, Ashton-Miller JA, Huston LJ. A gender-related difference in the contribution of the knee musculature to sagittal-plane shear stiffness in subjects with similar knee laxity. J Bone Joint Surg Am. 2002;84:10–16.

    PubMed  Google Scholar 

  49. Wojtys EM, Huston LJ, Schock HJ, Boylan JP, Ashton-Miller JA. Gender differences in muscular protection of the knee in torsion in size-matched athletes. J Bone Joint Surg Am. 2003;85:782–789.

    PubMed  Google Scholar 

  50. Yoshiya S, Matsui N, Komistek RD, Dennis DA, Mahfouz M, Kurosaka M. In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J Arthroplasty. 2005;20:777–783.

    Article  PubMed  Google Scholar 

  51. Zeller BL, McCrory JL, Kibler WB, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31:449–456.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank William Badger, Jason Horan, and Matthew Anderle for assistance with MR and fluoroscopic imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Komistek PhD.

Additional information

One or more of the authors (RDK, MRM, ALL) have received research grant from DePuy, Inc (Warsaw, IN). Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

Each author certifies that his or her institution approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained.

This work was performed at both the University of Rochester and the University of Tennessee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 852 kb)

(MPG 963 kb)

(MPG 11,130 kb)

About this article

Cite this article

Leszko, F., Hovinga, K.R., Lerner, A.L. et al. In Vivo Normal Knee Kinematics: Is Ethnicity or Gender an Influencing Factor?. Clin Orthop Relat Res 469, 95–106 (2011). https://doi.org/10.1007/s11999-010-1517-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-010-1517-z

Keywords

Navigation